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— How can we privately compute f(s), without a trusted third party?



Enter (secure) multi-party computation
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secret sharing
— (n, t)-threshold scheme
— < t cannot recover the secret
— semi-honest (passive), honest
majority
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Secret sharing (SS) techniques

Fields F, (Shamir [Sha79]) Rings Z« (Ito et al. [ISN87])
— Shares are points on a polynomial — Each party maintains replicated shares
— Reconstruction through interpolation — Compatible with native CPU

(requires multiplicative inverses) instructions
— Reliance on large-number libraries — Limited to n = 3, 4 over integers
f(X) =S5+ ax+ -+ axt (mOd P) s = sq1y + 523 + 5033 (mod 2k)
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What do we really mean by “secure”?
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What do we really mean by “secure”?

S1 S5

N

— No information disclosed
throughout computation,
other than the output

— But does the output itself

0 contain sensitive information?
S2 Sy

Y,

— Can we quantify this
disclosure in a meaningful
) “What can we learn way?
@ about sy, given our
inputs and 07"



RSS framework for arbitrary n

— Develop a comprehensive suite of RSS protocols for any n to enable
general-purpose computation on integers, and floating-point values

Implement protocol constructions in an MPC compiler (PICCO) to enhance
accessibility and usability

Information disclosure analysis

Develop an information-theoretic approach to measure disclosure

Apply technique to a practically significant function (the average)

Extend analysis to complex statistical functions



General-purpose secure computation framework
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Where to begin?

velocities, inertia, capabilities,. . . minimize resource
consumption
51 % — () \
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numerical analysis ) \\__, end state
quadratic optimization

analytical functions
[Zap+18; Mun11; Vir+18]




Where to begin?

velocities, inertia, capabilities,. . . minimize resource
consumption
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Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,
inputting private values
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Towards general-purpose secure computation

Building Blocks Composite Operations Floating-point
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— How can we make MPC more accessible for end users?
— MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]

— Extensive feature set (parallelization, pointers to private data, dynamic memory, . ..)

public int main() {
private int A, B, C;
smcinput (A);
smcinput (B);
C = A x B;
smcoutput (C);

User program (extended C)
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Lowering the barrier to entry

— How can we make MPC more accessible for end users?
— MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]

— Extensive feature set (parallelization, pointers to private data, dynamic memory, . ..)

public int main() { int __original_main() {

private int A, B, C; priv_int A, B, C;

smcinput (A); . __s->smc_input (A);

smcinput (B); complles to o __s->smc_input(B);

C = A % B; __s->smc_mult(A, B, C);

smcoutput (C); __s->smc_output (C);
3 ¥

Translated program (C++), calls

User program (extended C
prog ( ) technique-specific protocols

— Uses Shamir’s secret sharing
— Integrated RSS protocols into PICCO



Ongoing work

— Our n-party RSS framework serves as the foundation for a number of research

directions
Protocols for nonlinear functions Interesting, practically significant
[Ali+13; Rat+21; Rat+22] applications of MPC
— logl4] — Data streaming statistics, quantile
SNE queries
_ old] — Hybrid RSS/DPF-based

system [SVG24]
— exp([4])
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Information disclosure analysis




Setting and metric

— Partition into attackers A, targets T,
and spectators S

— Model participants’ inputs by random
variables Xp
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Setting and metric

S1 Sp — Partition into attackers A, targets T,
T Q\ and spectators S
— Model participants’ inputs by random
variables Xp

— How to measure the information
disclosed by the output?

Entropy!

H(X)  h(X)
—— =

Shannon differential
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Putting it together

— Attackers X4, targets X7, and spectators Xs
— Treat the output as a random variable: f(Xa, X7, Xs) =0
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Putting it together

— Attackers X4, targets X7, and spectators Xs
— Treat the output as a random variable: f(Xa, X1, Xs) =0
Attackers’ weighted average entropy [AH17]

“how much information A learns

A 0% =0 = about the target, given x4 and O"

Absolute entropy loss [BBZ24a; BBZ24b]

“the total amount of information dis-

ARSI = IR0S [P =5 @) = closed about the target, given x4 and O”
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Case study: the average salary computation

— Analyzed the average salary computation, reduces to a sum:

() =L0a+ - +xa) 2 xi+-+x
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Case study: the average salary computation

— Analyzed the average salary computation, reduces to a sum:

() =L0a+ - +xa) 2 xi+-+x o]
’ —e— Pois(4)
. ) 061 . —— U(0,7)
— Poisson, uniform, Gaussian, log-normal | ¢ v N(0,4)

--v-- log Nrw(1.67,0.15)

— For a single evaluation, disclosure is
independent of:

— the attacker’s input 0.3
0.21
H(XT | Xa = x4,0) = H(X7 | 0) N

— the distribution and its parameters

— Much more analysis in the paper
- Z 2 eva|uations, min—entropy, mixed Figure 1: Absolute entropy loss (lower is better)
distribution parameters . ..

No. spectators

13



Next step: advanced statistical measures

— Prior analysis exploited properties of sums of RVs, leveraged closed-form
expressions (of the entropy)
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— Variability measures (variance)
— Multidimensional outputs

— Output could be discrete, while the
inputs are continuous
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Next step: advanced statistical measures

— Prior analysis exploited properties of sums of RVs, leveraged closed-form

expressions (of the entropy)

— What about complex functions?

— Order statistics (max/min, median)
— Variability measures (variance)
— Multidimensional outputs

— Output could be discrete, while the
inputs are continuous

— Data-driven techniques [Gao+17]
to estimate the entropy

Estimating Mutual Information for
Discrete-Continuous Mixtures
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Sreeram Kannan
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Sewoong Oh
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mutual information < absolute loss
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Interesting observations: simultaneous release

Variance and mean release

The total disclosure from individual function outputs f, and f,2 is at least the
amount of information disclosed from a joint release f, ,2)?
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Variance and mean release

The total disclosure from individual function outputs f, and f,2 is at least the
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Interesting observations: simultaneous release

Variance and mean release
The total disclosure from individual function outputs f, and f,2 is at least the
amount of information disclosed from a joint release f, ,2)?

() =2 (0 — ()’ e
14
— o) (X) = (£2(x), £u(x)) O N
— Gap between the curves %1-0
suggests A can learn more £o08
information about the target = 06
0.4
== Hpt+Hg, | | — |5|=2
->- Hr |S| =5 ° ' ’ |?r)1put Xi ’ ’ !

(]
Figure 2: Abs. entropy loss, U(0, 7) (lower is better)
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Interesting observations: simultaneous release

Variance and mean release
The total disclosure from individual function outputs f, and f,2 is at least the
amount of information disclosed from a joint release f, ,2)?

() =13 (i~ fulx))? ——

12
= fuo2)(x) = (f2(x), fu(x)) 10
— Gap between the curves A

suggests A can learn more
information about the target

o
o

Entropy (bits)
S
(o]

—e— H¢ + H¢ — |5]=2
u 02 ‘ ‘ -5 0 5
ISI=5 Input x4
Figure 3: Abs. entropy loss, N'(0, 2) (lower is better)

-%- H

(]
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Interesting observations: simultaneous release

Variance and mean release

More information is revealed from the joint release f, ,2) than from the individual
function outputs f, and f,2.

fe() =13 (6~ ()

= fuo2)(x) = (f2(x), fu(x)) y v \
[ \
— Gap between the curves | £ £ |
S 7 o? /
uggests A can learn more \
information about the target \ » /
N S ~
N _d ~a==
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Interesting observations: simultaneous release

Variance and mean release

More information is revealed from the joint release f, ,2) than from the individual
function outputs f, and f,2.

ﬂ,zx:l _X,-—fux2 I —— _
() =52, (x5 = fu(x) = f\\f/

= flpo?) (%) = (fo2(x), u(x))

— Gap between the curves ' —
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Ongoing work

— Theoretical basis from our comprehensive analysis of the average

— Mouch to learn for complex functions

Analytical and data-driven evaluation Mitigation strategies

of complex functions .
— Synthetic inputs

— Derive analytical expressions the — Modifying the function

ent.ropy — Adding noise (DP)
— Estimators suffer from the “curse of

dimensionality”
— Can project high-dimensional data

into lower-dimensional space _ (min— g- cross) entropies

Alternate metrics

16



Conclusions




Conclusions

— RSS for any number of parties
— Information disclosure analysis

— Number of interesting current/future research directions
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Thank youl!

Questions?
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Intuitive observations: maximum

Maximum

An adversary maximizes the information
learned by minimizing their influence.

fmax(X) = max x;
1

— Inverse behavior for fmin(x)

2.0 +
e [— s=1 — Isi=4 nnin ks e s i i s
participates Is| =2 1S|=5 0 1 2 3 4 5
---- A not present
IS| =3 Input xa

Figure 4: Uniform U(0,7), H(XT | X4 = x4, 0)
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Intuitive observations: maximum

Maximum A HX7)
An adversary maximizes the information
learned by minimizing their influence. 2]
ENRT
==
>
fmax(X) = max x; g 0
l 1
i
—1A
— Inverse behavior for fmin(x) ‘
—21
A smiciont —Isl=1 — Is|=4 LT/ — ! !
participates — Is|=2 IS| =5 _5 0 5
---- A not present
— |5]=3 Input x4

Figure 4: Normal N'(0,4.0), H(XT | XA = x4, O)
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Binary-to-arithmetic conversion (B2A)

— Often operate on individual bits of secrets, requiring conversion from Zy — Zo«
— Prior works use RandBit [Dam+19], requires temporary computation in Zok+2
— E.g., k = 8 requires 16-bit integers, doubling the communication

— Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n [Bac24]

1. t parties locally XOR a subset of their shares, enter result into computation
2. Remaining t + 1 parties “locally reshare” last share (all but one share is nonzero)
3. Compute XOR (in Zy«) of local XOR(s) and the last share as a tree

— Can use approach to generate shared random bits (RandBit) without Zyk+2
— Up to 6.5x faster for 3 parties, 2x faster for 5 parties

21



Floating-point representation

—_1— p q(+ 1)——
3 = | sign s || exponent e || mantissa (significand) m |
_J
a=(1- 1 2)-2e-m:(z,s,e,m)
ifa=0 [Ali4+13,Rat+422]
otherwise
Most operations are conceptually similar . - ~
to their integer equivalents... oo et Gor aissliilon |+ (B
_ 7. — Exponents, mantissas must be
— Comparisons [8] < [?] obliviously aligned and normalized
— Multiplication [&]-[b] — Comparisons, left/right shifts, prefix

— Division [3]/[b] ops, rounding, ...

22



Differential privacy

-a S -=

“indistinguishable”

up to €
D without x Mechanism /
o) —| "Ny | (outeet
)

— Useful for large databases (think n > 10,000)...
— ... but absolutely destroys the utility of the result (up to 100% error!)
— Our goal: first determine if a function discloses too much information

28]
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