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Motivation



Motivational example: satellite mechanics

s2 s3 s4

s5s1

– How can we privately compute f (s), without a trusted third party?

3



Motivational example: satellite mechanics

nation statesagencies

s2 s3 s4

s5s1

private sector

– How can we privately compute f (s), without a trusted third party?

3



Motivational example: satellite mechanics

! !

nation statesagencies

s2 s3 s4

s5s1

private sector

– How can we privately compute f (s), without a trusted third party?

3



Motivational example: satellite mechanics

trusted third party

s3
s5s1

s=(s1; s2; s3; s4; s5)

s2 s4

s2 s3 s4

s5s1

– How can we privately compute f (s), without a trusted third party?

3



Motivational example: satellite mechanics

trusted third party

f (s)f (s)

s=(s1; s2; s3; s4; s5)

f (s) f (s)f (s)

s2 s3 s4

s5s1

– How can we privately compute f (s), without a trusted third party?

3



Motivational example: satellite mechanics

trusted third party

f (s)f (s)

s=(s1; s2; s3; s4; s5)

f (s) f (s)f (s)

s2 s3 s4

s5s1

– How can we privately compute f (s), without a trusted third party?
3



Enter (secure) multi-party computation
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Multi-party computation (MPC)

Multiple participants jointly
evaluating an arbitrary function on
private inputs.

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the secret

– semi-honest (passive), honest
majority
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Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Limited to n = 3; 4 over integers
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What do we really mean by “secure”?

s1

s3

s2 s4

s5

Πf ([s])=o

– No information disclosed
throughout computation,
other than the output

– But does the output itself
contain sensitive information?

– Can we quantify this
disclosure in a meaningful
way?
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What do we really mean by “secure”?
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RSS framework for arbitrary n

– Develop a comprehensive suite of RSS protocols for any n to enable
general-purpose computation on integers, and floating-point values

– Implement protocol constructions in an MPC compiler (PICCO) to enhance
accessibility and usability

Information disclosure analysis

– Develop an information-theoretic approach to measure disclosure

– Apply technique to a practically significant function (the average)

– Extend analysis to complex statistical functions



General-purpose secure computation framework



Where to begin?

velocities, inertia, capabilities,. . .

end state

minimize resource
consumption

f (s)
s2

s1

s3
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Where to begin?

velocities, inertia, capabilities,. . .

end state

minimize resource
consumption

[Zap+18; Mun11; Vir+18]

numerical analysis

analytical functions
quadratic optimization

matrix multiplications (X·Y)

comparisons (x
?
> y)

approximations (f̃ ≈ f )
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Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

c·[a]
[a]+[b]

ff
local, “free”

1 round,
O(t) comm.

P3

P1

P2

[a]·[b]
Open([a])

Input(a)
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Lowering the barrier to entry

– How can we make MPC more accessible for end users?

– MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]

– Extensive feature set (parallelization, pointers to private data, dynamic memory, . . . )

public int main() {
private int A, B, C;
smcinput(A);
smcinput(B);
C = A * B;
smcoutput(C);

}

User program (extended C)

compiles to

int __original_main () {
priv_int A, B, C;
__s ->smc_input(A);
__s ->smc_input(B);
__s ->smc_mult(A, B, C);
__s ->smc_output(C);

}

Translated program (C++), calls
technique-specific protocols

– Uses Shamir’s secret sharing

– Integrated RSS protocols into PICCO
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Ongoing work

– Our n-party RSS framework serves as the foundation for a number of research
directions

Protocols for nonlinear functions

[Ali+13; Rat+21; Rat+22]

– log[ã]

–
p
[ã]

– 2[ã]

– exp([ã])

Interesting, practically significant
applications of MPC

– Data streaming statistics, quantile
queries

– Hybrid RSS/DPF-based
system [SVG24]
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Information disclosure analysis



Setting and metric

s1

s3

s2 s4

s5

A

– Partition into attackers A, targets T ,
and spectators S

– Model participants’ inputs by random
variables XP

– How to measure the information
disclosed by the output?

Entropy!
H(X)| {z }
Shannon

h(X)|{z}
differential
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Putting it together

– Attackers XA, targets XT , and spectators XS

– Treat the output as a random variable: f (XA;XT ;XS) = O

Attackers’ weighted average entropy [AH17]

H(XT | XA = xA; O) =⇒ “how much information A learns
about the target, given xA and O”

Absolute entropy loss [BBZ24a; BBZ24b]

H(XT )−H(XT | XA = xA; O) =⇒ “the total amount of information dis-
closed about the target, given xA and O”
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Case study: the average salary computation

– Analyzed the average salary computation, reduces to a sum:

f—(x) =
1
n (x1 + · · ·+ xn) → x1 + · · ·+ xn

– Poisson, uniform, Gaussian, log-normal

– For a single evaluation, disclosure is
independent of:

– the attacker’s input

H(XT | XA = xA; O) = H(XT | O)

– the distribution and its parameters

– Much more analysis in the paper

– ≥ 2 evaluations, min-entropy, mixed
distribution parameters . . .
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Figure 1: Absolute entropy loss (lower is better)

13



Next step: advanced statistical measures

– Prior analysis exploited properties of sums of RVs, leveraged closed-form
expressions (of the entropy)

– What about complex functions?
– Order statistics (max/min, median)
– Variability measures (variance)
– Multidimensional outputs

– Output could be discrete, while the
inputs are continuous

– Data-driven techniques [Gao+17]
to estimate the entropy

mutual information ⇔ absolute loss
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Interesting observations: simultaneous release

Variance and mean release

The total disclosure from individual function outputs f— and fff2 is at least the
amount of information disclosed from a joint release f(—;ff2)?

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

H(XT )

f—
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Ongoing work

– Theoretical basis from our comprehensive analysis of the average

– Much to learn for complex functions

Analytical and data-driven evaluation
of complex functions

– Derive analytical expressions the
entropy

– Estimators suffer from the “curse of
dimensionality”

– Can project high-dimensional data
into lower-dimensional space

Mitigation strategies

– Synthetic inputs

– Modifying the function

– Adding noise (DP)

Alternate metrics

– (min-, g -, cross) entropies
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Conclusions



Conclusions

– RSS for any number of parties

– Information disclosure analysis

– Number of interesting current/future research directions
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Thank you!
Questions?
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Intuitive observations: maximum

Maximum

An adversary maximizes the information
learned by minimizing their influence.

fmax(x) = max
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xi

– Inverse behavior for fmin(x)
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Figure 4: Uniform U(0; 7), H(XT | XA = xA; O)
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Binary-to-arithmetic conversion (B2A)

– Often operate on individual bits of secrets, requiring conversion from Z2 → Z2k

– Prior works use RandBit [Dam+19], requires temporary computation in Z2k+2

– E.g., k = 8 requires 16-bit integers, doubling the communication

– Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n [Bac24]

1. t parties locally XOR a subset of their shares, enter result into computation

2. Remaining t + 1 parties “locally reshare” last share (all but one share is nonzero)

3. Compute XOR (in Z2k ) of local XOR(s) and the last share as a tree

– Can use approach to generate shared random bits (RandBit) without Z2k+2

– Up to 6.5× faster for 3 parties, 2× faster for 5 parties
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Floating-point representation

sign s mantissa (significand) mã = exponent e

ã = (1 − z) · (1 − 2s) · 2e ·m = (z; s; e;m)


1 if ã = 0
0 otherwise

[Ali+13,Rat+22]

q(+ 1)p1

Most operations are conceptually similar
to their integer equivalents...

– Comparisons [ã]
?
< [b̃]

– Multiplication [ã]·[b̃]
– Division [ã]=[b̃]

... except for addition [ã] + [b̃]

– Exponents, mantissas must be
obliviously aligned and normalized

– Comparisons, left/right shifts, prefix
ops, rounding, . . .
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Differential privacy

“indistinguishable”
up to "

D with x

D without x
(D�)

Mechanism
M(D)

Mechanism
M(D�)

output

output

– Useful for large databases (think n ≥ 10,000)...

– ... but absolutely destroys the utility of the result (up to 100% error!)

– Our goal: first determine if a function discloses too much information
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