New Directions in Secure Multi-party Computation: Techniques and Information Disclosure Analysis

Alessandro Baccarini, PhD

February 5, 2025

Motivation

General-purpose secure computation framework

Information disclosure analysis

Conclusions

Motivation

- How can we privately compute f(s), without a trusted third party?

Enter (secure) multi-party computation

Multi-party computation (MPC)

Multiple participants **jointly** evaluating an **arbitrary** function on private inputs.

Enter (secure) multi-party computation

Multi-party computation (MPC)

Multiple participants **jointly** evaluating an **arbitrary** function on private inputs.

FHE, garbled circuits, secret sharing

Enter (secure) multi-party computation

Multi-party computation (MPC)

Multiple participants **jointly** evaluating an **arbitrary** function on private inputs.

- FHE, garbled circuits, secret sharing
- -(n, t)-threshold scheme
 - $\leq t$ cannot recover the secret
- semi-honest (passive), honest majority

Fields \mathbb{F}_p	(Shamir [Sha79])	Rings \mathbb{Z}_{2^k}	(Ito et al. [ISN87])

Secret sharing (SS) techniques

f(2)

f(1)

Fields \mathbb{F}_p (Shamir [Sha79]) **Rings** \mathbb{Z}_{2k} - Shares are points on a **polynomial** Reconstruction through interpolation (requires multiplicative inverses) - Reliance on large-number libraries $f(x) = s + a_1 x + \dots + a_t x^t \pmod{p}$ $P_i ightarrow (i, f(i))$

n

n

(Ito et al. [ISN87])

Secret sharing (SS) techniques

Fields \mathbb{F}_p

(Shamir [Sha79])

- Shares are points on a **polynomial**
- Reconstruction through interpolation (requires multiplicative inverses)
- Reliance on large-number libraries

Rings \mathbb{Z}_{2^k}

(Ito et al. [ISN87])

- Each party maintains replicated shares
- Compatible with native CPU instructions
- Limited to n = 3, 4 over integers

$$s = s_{\{1\}} + s_{\{2\}} + s_{\{3\}} \pmod{2^k}$$

Secret sharing (SS) techniques

Fields \mathbb{F}_p

(Shamir [Sha79])

- Shares are points on a **polynomial**
- Reconstruction through interpolation (requires multiplicative inverses)
- Reliance on large-number libraries

Rings \mathbb{Z}_{2^k}

(Ito et al. [ISN87])

- Each party maintains replicated shares
- Compatible with native CPU instructions
- Limited to n = 3, 4 over integers

What do we *really* mean by "secure"?

 No information disclosed throughout computation, other than the output

What do we *really* mean by "secure"?

- No information disclosed throughout computation, other than the output
- But does the **output itself** contain sensitive information?
- Can we **quantify** this disclosure in a meaningful way?

RSS framework for arbitrary *n*

- Develop a *comprehensive* suite of RSS protocols for any *n* to enable general-purpose computation on integers, and floating-point values
- Implement protocol constructions in an MPC compiler (PICCO) to enhance accessibility and usability

Information disclosure analysis

- Develop an information-theoretic approach to measure disclosure
- Apply technique to a practically significant function (the average)
- Extend analysis to complex statistical functions

General-purpose secure computation framework

Where to begin?

Where to begin?

Where to begin?

Composite Operations share conversion, shared randomness generation, comparisons, shifts, division

Composite Operations

share conversion, shared

randomness generation.

complexity

Composite Operations

share conversion. shared

randomness generation.

Floating-point Computation

floating-point arithmetic, function approximation

Composite Operations

share conversion, shared

Floating-point

Computation

floating-point arithmetic.

Composite Operations

share conversion, shared

true general-purpose computation

Floating-point

Computation

floating-point arithmetic.

- How can we make MPC more accessible for end users?

- How can we make MPC more accessible for end users?
- MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]
 - Extensive feature set (parallelization, pointers to private data, dynamic memory, ...)

```
public int main() {
    private int A, B, C;
    smcinput(A);
    smcinput(B);
    C = A * B;
    smcoutput(C);
}
```

User program (extended C)

- How can we make MPC more accessible for end users?
- MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]
 - Extensive feature set (parallelization, pointers to private data, dynamic memory, ...)

- Uses Shamir's secret sharing

- How can we make MPC more accessible for end users?
- MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]
 - Extensive feature set (parallelization, pointers to private data, dynamic memory, ...)

- Uses Shamir's secret sharing
- Integrated RSS protocols into PICCO

Our *n*-party RSS framework serves as the **foundation** for a number of research directions

Protocols for nonlinear functions

[Ali+13; Rat+21; Rat+22]

- $-\log[\tilde{a}]$
- $-\sqrt{[\tilde{a}]}$
- $-2^{[\tilde{a}]}$
- $\exp([\tilde{a}])$

Interesting, practically significant applications of MPC

- Data streaming statistics, quantile queries
 - Hybrid RSS/DPF-based system [SVG24]

Information disclosure analysis

- Partition into attackers A, targets T, and spectators S
- Model participants' inputs by random variables X_P

- Partition into attackers A, targets T, and spectators S
- Model participants' inputs by random variables X_P

- Partition into attackers A, targets T, and spectators S
- Model participants' inputs by random variables X_P
- How to measure the information disclosed by the output?

- Partition into attackers A, targets T, and spectators S
- Model participants' inputs by random variables X_P
- How to measure the information disclosed by the output?

Putting it together

- Attackers X_A , targets X_T , and spectators X_S
- Treat the **output** as a random variable: $f(\mathbf{X}_A, \mathbf{X}_T, \mathbf{X}_S) = O$

Putting it together

- Attackers X_A , targets X_T , and spectators X_S
- Treat the **output** as a random variable: $f(\mathbf{X}_A, \mathbf{X}_T, \mathbf{X}_S) = O$

 $H(\mathbf{X}_{T}) - H(\mathbf{X}_{T} \mid \mathbf{X}_{A} = \mathbf{x}_{A}, O) \implies \text{``the total amount of information disclosed about the target, given } \mathbf{x}_{A} \text{ and } O''$

Case study: the average salary computation

- Analyzed the average salary computation, reduces to a sum:

$$f_{\mu}(\mathbf{x}) = \frac{1}{n} (x_1 + \dots + x_n) \rightarrow x_1 + \dots + x_n$$

Case study: the average salary computation

- Analyzed the average salary computation, reduces to a sum:

$$f_{\mu}(\mathbf{x}) = \frac{1}{n} (x_1 + \cdots + x_n) \rightarrow x_1 + \cdots + x_n$$

- Poisson, uniform, Gaussian, log-normal
- For a single evaluation, disclosure is independent of:
 - the attacker's input

$$H(\mathbf{X}_{\mathcal{T}} \mid \mathbf{X}_{\mathcal{A}} = \mathbf{x}_{\mathcal{A}}, O) = H(\mathbf{X}_{\mathcal{T}} \mid O)$$

- the distribution and its parameters
- Much more analysis in the paper
 - 2 evaluations, min-entropy, mixed distribution parameters ...

Figure 1: Absolute entropy loss (lower is better)

Prior analysis exploited properties of sums of RVs, leveraged closed-form expressions (of the entropy)

- Prior analysis exploited properties of sums of RVs, leveraged closed-form expressions (of the entropy)
- What about complex functions?
 - Order statistics (max/min, median)
 - Variability measures (variance)
 - Multidimensional outputs
- Output could be **discrete**, while the inputs are **continuous**

Next step: advanced statistical measures

- Prior analysis exploited properties of sums of RVs, leveraged closed-form expressions (of the entropy)
- What about complex functions?
 - Order statistics (max/min, median)
 - Variability measures (variance)
 - Multidimensional outputs
- Output could be discrete, while the inputs are continuous
- Data-driven techniques [Gao+17] to estimate the entropy

Estimating Mutual Information for Discrete-Continuous Mixtures

Weihao Gao Department of ECE Coordinated Science Laboratory University of Illinois at Urbana-Champaign wgao9@illinois.edu

Sewoong Oh Department of IESE Coordinated Science Laboratory University of Illinois at Urbana-Champaign swoh@illinois.edu Sreeram Kannan Department of Electrical Engineering University of Washington ksreeram@uw.edu

Pramod Viswanath Department of ECE Coordinated Science Laboratory University of Illinois at Urbana-Champaign pramodv@illinois.edu

mutual information \Leftrightarrow absolute loss

Interesting observations: simultaneous release

Variance and mean release

The total disclosure from **individual** function outputs f_{μ} and f_{σ^2} is **at least** the amount of information disclosed from a **joint release** $f_{(\mu,\sigma^2)}$?

$$f_{\sigma^2}(\mathbf{x}) = \frac{1}{n} \sum_i (x_i - f_{\mu}(\mathbf{x}))^2$$

$$\implies f_{(\mu,\sigma^2)}(\mathbf{x}) = (f_{\sigma^2}(\mathbf{x}), f_{\mu}(\mathbf{x}))$$

Interesting observations: simultaneous release

Variance and mean release

The total disclosure from **individual** function outputs f_{μ} and f_{σ^2} is **at least** the amount of information disclosed from a **joint release** $f_{(\mu,\sigma^2)}$?

$$f_{\sigma^2}(\mathbf{x}) = \frac{1}{n} \sum_i (x_i - f_{\mu}(\mathbf{x}))^2$$

 $\implies f_{(\mu,\sigma^2)}(\mathbf{x}) = (f_{\sigma^2}(\mathbf{x}), f_{\mu}(\mathbf{x}))$

Interesting observations: simultaneous release

Variance and mean release

The total disclosure from **individual** function outputs f_{μ} and f_{σ^2} is **at least** the amount of information disclosed from a **joint release** $f_{(\mu,\sigma^2)}$?

$$f_{\sigma^2}(\mathbf{x}) = \frac{1}{n} \sum_i (x_i - f_{\mu}(\mathbf{x}))^2$$

 $\implies f_{(\mu,\sigma^2)}(\mathbf{x}) = (f_{\sigma^2}(\mathbf{x}), f_{\mu}(\mathbf{x}))$

The total disclosure from **individual** function outputs f_{μ} and f_{σ^2} is **at least** the amount of information disclosed from a **joint release** $f_{(\mu,\sigma^2)}$?

$$f_{\sigma^2}(\mathbf{x}) = rac{1}{n} \sum_i (x_i - f_\mu(\mathbf{x}))^2$$

$$\implies f_{(\mu,\sigma^2)}(\mathbf{x}) = (f_{\sigma^2}(\mathbf{x}), f_{\mu}(\mathbf{x}))$$

 Gap between the curves suggests A can learn more information about the target

$$\begin{array}{|c|c|c|c|c|} \hline \bullet & H_{f_{\mu}} + H_{f_{\sigma^2}} \\ \hline \bullet & H_{f_{(\mu,\sigma^2)}} \end{array} \end{array} \begin{array}{|c|c|c|c|} \hline & |S| = 2 \\ \hline & |S| = 5 \\ \hline & |S| = 5 \end{array}$$

Figure 2: Abs. entropy loss, $\mathcal{U}(0,7)$ (lower is better)

The total disclosure from **individual** function outputs f_{μ} and f_{σ^2} is **at least** the amount of information disclosed from a **joint release** $f_{(\mu,\sigma^2)}$?

$$f_{\sigma^2}(\mathbf{x}) = \frac{1}{n} \sum_i (x_i - f_\mu(\mathbf{x}))^2$$

$$\implies f_{(\mu,\sigma^2)}(\mathsf{x}) = (f_{\sigma^2}(\mathsf{x}), f_{\mu}(\mathsf{x}))$$

 Gap between the curves suggests A can learn more information about the target

$$\begin{array}{|c|c|c|c|c|} \hline \bullet & H_{f_{\mu}} + H_{f_{\sigma^2}} \\ \hline \bullet & H_{f_{(\mu,\sigma^2)}} \end{array} \end{array} \begin{array}{|c|c|c|c|} \hline & |S| = 2 \\ \hline & |S| = 5 \\ \hline & |S| = 5 \end{array}$$

Figure 3: Abs. entropy loss, $\mathcal{N}(0, 2)$ (lower is better)

More information is revealed from the **joint release** $f_{(\mu,\sigma^2)}$ than from the **individual** function outputs f_{μ} and f_{σ^2} .

$$f_{\sigma^2}(\mathbf{x}) = \frac{1}{n} \sum_i (x_i - f_{\mu}(\mathbf{x}))^2$$

- $\implies f_{(\mu,\sigma^2)}(\mathbf{x}) = (f_{\sigma^2}(\mathbf{x}), f_{\mu}(\mathbf{x}))$
- Gap between the curves suggests A can learn more information about the target

More information is revealed from the **joint release** $f_{(\mu,\sigma^2)}$ than from the **individual** function outputs f_{μ} and f_{σ^2} .

$$f_{\sigma^2}(\mathbf{x}) = \frac{1}{n} \sum_i (x_i - f_{\mu}(\mathbf{x}))^2$$

- $\implies f_{(\mu,\sigma^2)}(\mathbf{x}) = (f_{\sigma^2}(\mathbf{x}), f_{\mu}(\mathbf{x}))$
- Gap between the curves suggests A can learn more information about the target

More information is revealed from the **joint release** $f_{(\mu,\sigma^2)}$ than from the **individual** function outputs f_{μ} and f_{σ^2} .

$$f_{\sigma^2}(\mathbf{x}) = \frac{1}{n} \sum_i (x_i - f_\mu(\mathbf{x}))^2$$

- $\implies f_{(\mu,\sigma^2)}(\mathbf{x}) = (f_{\sigma^2}(\mathbf{x}), f_{\mu}(\mathbf{x}))$
- Gap between the curves suggests A can learn more information about the target

- Theoretical basis from our comprehensive analysis of the average
- Much to learn for complex functions

Analytical and data-driven evaluation of complex functions

- Derive analytical expressions the entropy
- Estimators suffer from the "curse of dimensionality"
 - Can project high-dimensional data into lower-dimensional space

Mitigation strategies

- Synthetic inputs
- Modifying the function
- Adding noise (DP)

Alternate metrics

- (min-, g-, cross) entropies

Conclusions

- RSS for any number of parties
- Information disclosure analysis
- Number of interesting current/future research directions

Thank you! Questions?

References

[AH17]	P. Ah-Fat and M. Huth. "Secure Multi-party Computation: Information Flow of Outputs and Game Theory". In: International Conference on Principles of Security and Trust. 2017, pp. 71–92.
[Ali+13]	M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. "Secure Computation on Floating Point Numbers". In: Network and Distributed System Security Symposium (NDSS). 2013.
[Bac24]	A. Baccarini. "New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis". PhD Thesis. University at Buffalo, 2024.
[BBZ24a]	A. Baccarini, M. Blanton, and S. Zou. "Understanding Information Disclosure from Secure Computation Output: A Comprehensive Study of Average Salary Computation". In: ACM Transactions on Privacy and Security (TOPS) 28.1 (2024), pp. 1–36.
[BBZ24b]	A. Baccarini, M. Blanton, and S. Zou. "Understanding Information Disclosure from Secure Computation Output: A Study of Average Salary Computation". In: ACM CODASPY. 2024, pp. 187–198.
[BGY23]	M. Blanton, M. T. Goodrich, and C. Yuan. "Secure and Accurate Summation of Many Floating-Point Numbers". In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2023.3 (2023), pp. 432–445.
[Dam+19]	I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev. "New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning". In: <i>IEEE Symposium on Security and Privacy (S&P)</i> . 2019, pp. 1102–1120.
[Gao+17]	W. Gao, S. Kannan, S. Oh, and P. Viswanath. "Estimating mutual information for discrete-continuous mixtures". In: Proceedings on Advances in Neural Information Processing Systems (NeurIPS) 30 (2017), pp. 5988–5999.
[ISN87]	M. Ito, A. Saito, and T. Nishizeki. "Secret Sharing Schemes Realizing General Access Structures". In: IEEE Global Telecommunication Conference (GLOBECOM). 1987, pp. 99–102.

References

[Kel20]	M. Keller. "MP-SPD2: A Versatile Framework for Multi-Party Computation". In: ACM Conference on Computer and Communications Security (CCS). 2020, pp. 1575–1590.
[Mun11]	$J. \ D. \ Munoz. "Rapid path-planning algorithms for autonomous proximity operations of satellites". PhD Thesis. University of Florida, 2011.$
[Rat+21]	D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran, and A. Rastogi. "SiRnn: A math library for secure RNN inference". In: <i>IEEE Symposium on Security and Privacy (S&P)</i> . 2021, pp. 1003–1020.
[Rat+22]	D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and A. Rastogi. "SecFloat: Accurate Floating-Point meets Secure 2-Party Computation". In: IEEE Symposium on Security and Privacy (S&P). 2022, pp. 1553–1553.
[Sha79]	A. Shamir. "How to Share a Secret". In: Communications of the ACM 22.11 (1979), pp. 612-613.
[SVG24]	S. Sasy, A. Vadapalli, and I. Goldberg. "PRAC: Round-Efficient 3-Party MPC for Dynamic Data Structures". In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2024.3 (2024), pp. 692–714.
[Vir+18]	J. Virgili-Llop, C. Zagaris, H. Park, R. Zappulla, and M. Romano. "Experimental evaluation of model predictive control and inverse dynamics control for spacecraft proximity and docking maneuvers". In: CEAS Space Journal 10 (2018), pp. 37–49.
[Zap+18]	R. Zappulla, H. Park, J. Virgili-Llop, and M. Romano. "Real-time autonomous spacecraft proximity maneuvers and docking using an adaptive artificial potential field approach". In: <i>IEEE Transactions on Control Systems Technology</i> 27.6 (2018), pp. 2598–2605.
[ZSB13]	Y. Zhang, A. Steele, and M. Blanton. "PICCO: A general-purpose compiler for private distributed computation". In: ACM Conference on Computer and Communications Security (CCS). 2013, pp. 813–826.

Maximum

An adversary **maximizes** the information learned by **minimizing** their influence.

$$f_{\max}(\mathbf{x}) = \max_i x_i$$

– Inverse behavior for $f_{\min}(\mathbf{x})$

A participatos	— <i>S</i> = 1	<i>S</i> = 4
A not present		
A not present	— <i>S</i> = 3	

Figure 4: Uniform $\mathcal{U}(0,7)$, $H(X_T | X_A = x_A, O)$

Maximum

An adversary **maximizes** the information learned by **minimizing** their influence.

$$f_{\max}(\mathbf{x}) = \max_i x_i$$

= 4

= 5

- Inverse behavior for
$$f_{\min}(\mathbf{x})$$

A ====t ¹ =1 ¹ ==t==	<i>S</i> = 1	— S
— A participates		<u> </u>
A not present		

Figure 4: Normal $\mathcal{N}(0, 4.0)$, $H(\mathbf{X}_{\mathcal{T}} \mid \mathbf{X}_{\mathcal{A}} = \mathbf{x}_{\mathcal{A}}, O)$

Binary-to-arithmetic conversion (B2A)

- Often operate on individual bits of secrets, requiring conversion from $\mathbb{Z}_2 \to \mathbb{Z}_{2^k}$
- Prior works use **RandBit** [Dam+19], requires temporary computation in $\mathbb{Z}_{2^{k+2}}$
 - E.g., k = 8 requires 16-bit integers, **doubling** the communication
- Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n

- 1. t parties locally XOR a subset of their shares, enter result into computation
- 2. Remaining t + 1 parties "locally reshare" last share (all but one share is nonzero)
- 3. Compute XOR (in \mathbb{Z}_{2^k}) of local XOR(s) and the last share as a tree
- Can use approach to generate shared random bits (RandBit) without $\mathbb{Z}_{2^{k+2}}$
- Up to 6.5× faster for 3 parties, 2× faster for 5 parties

[Bac24]

Floating-point representation

$$\tilde{a} = \underbrace{\text{sign } s}_{\text{exponent } e} \underbrace{\text{mantissa (significand) } m}_{q(+1)}$$

$$\tilde{a} = (1 - z) \cdot (1 - 2s) \cdot 2^e \cdot m = (z, s, e, m)$$

$$\begin{cases} 1 & \text{if } \tilde{a} = 0 \\ 0 & \text{otherwise} \end{cases}$$
[Ali+13,Rat+22]

Most operations are conceptually similar to their integer equivalents...

- Comparisons
- Multiplication
- Division

- $[\tilde{a}] \stackrel{?}{<} [\tilde{b}]$ $[\tilde{a}] \cdot [\tilde{b}]$ $[\tilde{a}] / [\tilde{b}]$
- ... except for addition $[\tilde{a}] + [\tilde{b}]$
 - Exponents, mantissas must be obliviously aligned and normalized
 - Comparisons, left/right shifts, prefix ops, rounding, ...

Differential privacy

- Useful for large databases (think $n \ge 10,000)...$
- ... but absolutely destroys the utility of the result (up to 100% error!)
- Our goal: first determine if a function discloses too much information