
New Directions in Secure Multi-party Computation:
Techniques and Information Disclosure Analysis

Alessandro Baccarini, PhD

abaccarini@proton.me
� abaccarini.github.io

February 5, 2025

1

mailto:abaccarini@proton.me
https://abaccarini.github.io/

Outline

Motivation

General-purpose secure computation framework

Information disclosure analysis

Conclusions

2

Motivation

Motivational example: satellite mechanics

s2 s3 s4

s5s1

– How can we privately compute f (s), without a trusted third party?

3

Motivational example: satellite mechanics

nation statesagencies

s2 s3 s4

s5s1

private sector

– How can we privately compute f (s), without a trusted third party?

3

Motivational example: satellite mechanics

! !

nation statesagencies

s2 s3 s4

s5s1

private sector

– How can we privately compute f (s), without a trusted third party?

3

Motivational example: satellite mechanics

trusted third party

s3
s5s1

s=(s1; s2; s3; s4; s5)

s2 s4

s2 s3 s4

s5s1

– How can we privately compute f (s), without a trusted third party?

3

Motivational example: satellite mechanics

trusted third party

f (s)f (s)

s=(s1; s2; s3; s4; s5)

f (s) f (s)f (s)

s2 s3 s4

s5s1

– How can we privately compute f (s), without a trusted third party?

3

Motivational example: satellite mechanics

trusted third party

f (s)f (s)

s=(s1; s2; s3; s4; s5)

f (s) f (s)f (s)

s2 s3 s4

s5s1

– How can we privately compute f (s), without a trusted third party?
3

Enter (secure) multi-party computation

s1

s3

s2 s4

s5
Multi-party computation (MPC)

Multiple participants jointly
evaluating an arbitrary function on
private inputs.

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the secret

– semi-honest (passive), honest
majority

4

Enter (secure) multi-party computation

s1

s3

s2 s4

s5

Πf ([s])=o
s=(s1; : : : ; s5)

Multi-party computation (MPC)

Multiple participants jointly
evaluating an arbitrary function on
private inputs.

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the secret

– semi-honest (passive), honest
majority

4

Enter (secure) multi-party computation

s1

s3

s2 s4

s5

Πf ([s])=o
s=(s1; : : : ; s5)

Multi-party computation (MPC)

Multiple participants jointly
evaluating an arbitrary function on
private inputs.

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the secret

– semi-honest (passive), honest
majority

4

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Limited to n = 3; 4 over integers

5

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

s

1 2 n

f (1) f (2)

f (n)

: : : : : :

f (x) = s + a1x + · · · + atx
t (mod p)

Pi → (i ; f (i))

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Limited to n = 3; 4 over integers

5

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

s

1 2 n

f (1) f (2)

f (n)

: : : : : :

f (x) = s + a1x + · · · + atx
t (mod p)

Pi → (i ; f (i))

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Limited to n = 3; 4 over integers

s = s{1} + s{2} + s{3} (mod 2k)

5

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

s

1 2 n

f (1) f (2)

f (n)

: : : : : :

f (x) = s + a1x + · · · + atx
t (mod p)

Pi → (i ; f (i))

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Limited to n = 3; 4 over integers

s = s{1} + s{2} + s{3} (mod 2k)s = s{1} + s{2} + s{3} (mod 2k)

s{2}; s{3} s{1}; s{3} s{1}; s{2}

P3P1 P2

5

What do we really mean by “secure”?

s1

s3

s2 s4

s5

Πf ([s])=o

– No information disclosed
throughout computation,
other than the output

– But does the output itself
contain sensitive information?

– Can we quantify this
disclosure in a meaningful
way?

6

What do we really mean by “secure”?

s1

s3

s2 s4

s5

“What can we learn
about s1, given our

inputs and o?”

– No information disclosed
throughout computation,
other than the output

– But does the output itself
contain sensitive information?

– Can we quantify this
disclosure in a meaningful
way?

6

RSS framework for arbitrary n

– Develop a comprehensive suite of RSS protocols for any n to enable
general-purpose computation on integers, and floating-point values

– Implement protocol constructions in an MPC compiler (PICCO) to enhance
accessibility and usability

Information disclosure analysis

– Develop an information-theoretic approach to measure disclosure

– Apply technique to a practically significant function (the average)

– Extend analysis to complex statistical functions

General-purpose secure computation framework

Where to begin?

velocities, inertia, capabilities,. . .

end state

minimize resource
consumption

f (s)
s2

s1

s3

7

Where to begin?

velocities, inertia, capabilities,. . .

end state

minimize resource
consumption

[Zap+18; Mun11; Vir+18]

numerical analysis

analytical functions
quadratic optimization

f (s)
s2

s1

s3

7

Where to begin?

velocities, inertia, capabilities,. . .

end state

minimize resource
consumption

[Zap+18; Mun11; Vir+18]

numerical analysis

analytical functions
quadratic optimization

matrix multiplications (X·Y)

comparisons (x
?
> y)

approximations (f̃ ≈ f)

f (s)
s2

s1

s3

7

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

c·[a]
[a]+[b]

ff
local, “free”

1 round,
O(t) comm.

P3

P1

P2

[a]·[b]
Open([a])

Input(a)

8

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

c·[a]
[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) (k; t)
rounds/comm.

com
plexity

[a]·[b]
Open([a])

Input(a)

[a]
?
< [b] [a]

?
= [b]

([r] ∈ Z2k ; [ri]1 ∈ Z2)

Z2 −→ Z2k [rb] ∈ {0; 1}

8

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

c·[a]
[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) (k; t)
rounds/comm.

com
plexity

[a]·[b]
Open([a])

Input(a)

integers (and fixed-point)

[a]
?
< [b] [a]

?
= [b]

([r] ∈ Z2k ; [ri]1 ∈ Z2)

Z2 −→ Z2k [rb] ∈ {0; 1}

8

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

Floating-point
Computation

floating-point arithmetic,
function approximationc·[a]

[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) (k; t)
rounds/comm.

com
plexity

[a]·[b]
Open([a])

Input(a)

integers (and fixed-point)

?
reals

[a]
?
< [b] [a]

?
= [b]

([r] ∈ Z2k ; [ri]1 ∈ Z2)

Z2 −→ Z2k [rb] ∈ {0; 1}

8

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

Floating-point
Computation

floating-point arithmetic,
function approximationc·[a]

[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) (k; t)
rounds/comm.

many rounds,
expensive comm.

[ã]<[b̃]

[ã]+[b̃]

[ã]·[b̃] [ã]=[b̃]com
plexity

[a]·[b]
Open([a])

Input(a) f (x) ≈

8
>><
>>:

piecewise;
polynomial;
series, LUT;

: : :

integers (and fixed-point) reals

[a]
?
< [b] [a]

?
= [b]

([r] ∈ Z2k ; [ri]1 ∈ Z2)

Z2 −→ Z2k [rb] ∈ {0; 1}

8

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

Floating-point
Computation

floating-point arithmetic,
function approximationc·[a]

[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) (k; t)
rounds/comm.

many rounds,
expensive comm.

[ã]<[b̃]

[ã]+[b̃]

[ã]·[b̃] [ã]=[b̃]com
plexity

[a]·[b]
Open([a])

Input(a) f (x) ≈

8
>><
>>:

piecewise;
polynomial;
series, LUT;

: : :

true general-purpose computation

[a]
?
< [b] [a]

?
= [b]

([r] ∈ Z2k ; [ri]1 ∈ Z2)

Z2 −→ Z2k [rb] ∈ {0; 1}

8

Lowering the barrier to entry

– How can we make MPC more accessible for end users?

– MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]

– Extensive feature set (parallelization, pointers to private data, dynamic memory, . . .)

public int main() {
private int A, B, C;
smcinput(A);
smcinput(B);
C = A * B;
smcoutput(C);

}

User program (extended C)

compiles to

int __original_main () {
priv_int A, B, C;
__s ->smc_input(A);
__s ->smc_input(B);
__s ->smc_mult(A, B, C);
__s ->smc_output(C);

}

Translated program (C++), calls
technique-specific protocols

– Uses Shamir’s secret sharing

– Integrated RSS protocols into PICCO

9

Lowering the barrier to entry

– How can we make MPC more accessible for end users?

– MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]

– Extensive feature set (parallelization, pointers to private data, dynamic memory, . . .)

public int main() {
private int A, B, C;
smcinput(A);
smcinput(B);
C = A * B;
smcoutput(C);

}

User program (extended C)

compiles to

int __original_main () {
priv_int A, B, C;
__s ->smc_input(A);
__s ->smc_input(B);
__s ->smc_mult(A, B, C);
__s ->smc_output(C);

}

Translated program (C++), calls
technique-specific protocols

– Uses Shamir’s secret sharing

– Integrated RSS protocols into PICCO

9

Lowering the barrier to entry

– How can we make MPC more accessible for end users?

– MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]

– Extensive feature set (parallelization, pointers to private data, dynamic memory, . . .)

public int main() {
private int A, B, C;
smcinput(A);
smcinput(B);
C = A * B;
smcoutput(C);

}

User program (extended C)

compiles to

int __original_main () {
priv_int A, B, C;
__s ->smc_input(A);
__s ->smc_input(B);
__s ->smc_mult(A, B, C);
__s ->smc_output(C);

}

Translated program (C++), calls
technique-specific protocols

– Uses Shamir’s secret sharing

– Integrated RSS protocols into PICCO

9

Lowering the barrier to entry

– How can we make MPC more accessible for end users?

– MPC compilers: MP-SPDZ [Kel20], PICCO [ZSB13]

– Extensive feature set (parallelization, pointers to private data, dynamic memory, . . .)

public int main() {
private int A, B, C;
smcinput(A);
smcinput(B);
C = A * B;
smcoutput(C);

}

User program (extended C)

compiles to

int __original_main () {
priv_int A, B, C;
__s ->smc_input(A);
__s ->smc_input(B);
__s ->smc_mult(A, B, C);
__s ->smc_output(C);

}

Translated program (C++), calls
technique-specific protocols

– Uses Shamir’s secret sharing

– Integrated RSS protocols into PICCO

9

Ongoing work

– Our n-party RSS framework serves as the foundation for a number of research
directions

Protocols for nonlinear functions

[Ali+13; Rat+21; Rat+22]

– log[ã]

–
p
[ã]

– 2[ã]

– exp([ã])

Interesting, practically significant
applications of MPC

– Data streaming statistics, quantile
queries

– Hybrid RSS/DPF-based
system [SVG24]

10

Information disclosure analysis

Setting and metric

s1

s3

s2 s4

s5

A

– Partition into attackers A, targets T ,
and spectators S

– Model participants’ inputs by random
variables XP

– How to measure the information
disclosed by the output?

Entropy!
H(X)| {z }
Shannon

h(X)|{z}
differential

11

Setting and metric

s1

s3

s2 s4

s5

A

T
– Partition into attackers A, targets T ,
and spectators S

– Model participants’ inputs by random
variables XP

– How to measure the information
disclosed by the output?

Entropy!
H(X)| {z }
Shannon

h(X)|{z}
differential

11

Setting and metric

s1

s3

s2 s4

s5

S

A

T
– Partition into attackers A, targets T ,
and spectators S

– Model participants’ inputs by random
variables XP

– How to measure the information
disclosed by the output?

Entropy!
H(X)| {z }
Shannon

h(X)|{z}
differential

11

Setting and metric

s1

s3

s2 s4

s5

S

A

T
– Partition into attackers A, targets T ,
and spectators S

– Model participants’ inputs by random
variables XP

– How to measure the information
disclosed by the output?

Entropy!
H(X)| {z }
Shannon

h(X)|{z}
differential

11

Putting it together

– Attackers XA, targets XT , and spectators XS

– Treat the output as a random variable: f (XA;XT ;XS) = O

Attackers’ weighted average entropy [AH17]

H(XT | XA = xA; O) =⇒ “how much information A learns
about the target, given xA and O”

Absolute entropy loss [BBZ24a; BBZ24b]

H(XT)−H(XT | XA = xA; O) =⇒ “the total amount of information dis-
closed about the target, given xA and O”

12

Putting it together

– Attackers XA, targets XT , and spectators XS

– Treat the output as a random variable: f (XA;XT ;XS) = O

Attackers’ weighted average entropy [AH17]

H(XT | XA = xA; O) =⇒ “how much information A learns
about the target, given xA and O”

Absolute entropy loss [BBZ24a; BBZ24b]

H(XT)−H(XT | XA = xA; O) =⇒ “the total amount of information dis-
closed about the target, given xA and O”

12

Case study: the average salary computation

– Analyzed the average salary computation, reduces to a sum:

f—(x) =
1
n (x1 + · · ·+ xn) → x1 + · · ·+ xn

– Poisson, uniform, Gaussian, log-normal

– For a single evaluation, disclosure is
independent of:

– the attacker’s input

H(XT | XA = xA; O) = H(XT | O)

– the distribution and its parameters

– Much more analysis in the paper

– ≥ 2 evaluations, min-entropy, mixed
distribution parameters . . .

13

Case study: the average salary computation

– Analyzed the average salary computation, reduces to a sum:

f—(x) =
1
n (x1 + · · ·+ xn) → x1 + · · ·+ xn

– Poisson, uniform, Gaussian, log-normal

– For a single evaluation, disclosure is
independent of:

– the attacker’s input

H(XT | XA = xA; O) = H(XT | O)
– the distribution and its parameters

– Much more analysis in the paper

– ≥ 2 evaluations, min-entropy, mixed
distribution parameters . . .

2 4 6 8 10
No. spectators

0:1

0:2

0:3

0:4

0:5

0:6

0:7

E
nt
ro
py

(b
it
s)

Pois(4)

U(0; 7)
N (0; 4)

logNFW(1:67; 0:15)

Pois(4)

U(0; 7)
N (0; 4)

logNFW(1:67; 0:15)

Figure 1: Absolute entropy loss (lower is better)

13

Next step: advanced statistical measures

– Prior analysis exploited properties of sums of RVs, leveraged closed-form
expressions (of the entropy)

– What about complex functions?
– Order statistics (max/min, median)
– Variability measures (variance)
– Multidimensional outputs

– Output could be discrete, while the
inputs are continuous

– Data-driven techniques [Gao+17]
to estimate the entropy

mutual information ⇔ absolute loss

14

Next step: advanced statistical measures

– Prior analysis exploited properties of sums of RVs, leveraged closed-form
expressions (of the entropy)

– What about complex functions?
– Order statistics (max/min, median)
– Variability measures (variance)
– Multidimensional outputs

– Output could be discrete, while the
inputs are continuous

– Data-driven techniques [Gao+17]
to estimate the entropy

mutual information ⇔ absolute loss

14

Next step: advanced statistical measures

– Prior analysis exploited properties of sums of RVs, leveraged closed-form
expressions (of the entropy)

– What about complex functions?
– Order statistics (max/min, median)
– Variability measures (variance)
– Multidimensional outputs

– Output could be discrete, while the
inputs are continuous

– Data-driven techniques [Gao+17]
to estimate the entropy

mutual information ⇔ absolute loss

14

Interesting observations: simultaneous release

Variance and mean release

The total disclosure from individual function outputs f— and fff2 is at least the
amount of information disclosed from a joint release f(—;ff2)?

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

H(XT)

f—

15

Interesting observations: simultaneous release

Variance and mean release

The total disclosure from individual function outputs f— and fff2 is at least the
amount of information disclosed from a joint release f(—;ff2)?

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

H(XT)

fff2f—

15

Interesting observations: simultaneous release

Variance and mean release

The total disclosure from individual function outputs f— and fff2 is at least the
amount of information disclosed from a joint release f(—;ff2)?

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

H(XT)

f(—;ff2)

fff2f—

15

Interesting observations: simultaneous release

Variance and mean release

The total disclosure from individual function outputs f— and fff2 is at least the
amount of information disclosed from a joint release f(—;ff2)?

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

Hf— +Hfff2

Hf(—;ff2)

|S| = 2

|S| = 5
0 1 2 3 4 5 6 7

Input xA

0:4

0:6

0:8

1:0

1:2

1:4

1:6

E
nt
ro
py

(b
it
s)

Figure 2: Abs. entropy loss, U(0; 7) (lower is better)

15

Interesting observations: simultaneous release

Variance and mean release

The total disclosure from individual function outputs f— and fff2 is at least the
amount of information disclosed from a joint release f(—;ff2)?

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

Hf— +Hfff2

Hf(—;ff2)

|S| = 2

|S| = 5
−5 0 5

Input xA

0:4

0:6

0:8

1:0

1:2

E
nt
ro
py

(b
it
s)

Figure 3: Abs. entropy loss, N (0; 2) (lower is better)

15

Interesting observations: simultaneous release

Variance and mean release

More information is revealed from the joint release f(—;ff2) than from the individual
function outputs f— and fff2 .

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

H(XT)

f(—;ff2)

fff2f—

15

Interesting observations: simultaneous release

Variance and mean release

More information is revealed from the joint release f(—;ff2) than from the individual
function outputs f— and fff2 .

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

H(XT)

f(—;ff2)

fff2f—

15

Interesting observations: simultaneous release

Variance and mean release

More information is revealed from the joint release f(—;ff2) than from the individual
function outputs f— and fff2 .

fff2(x) =
1
n

X
i
(xi − f—(x))

2

=⇒ f(—;ff2)(x) = (fff2(x); f—(x))

– Gap between the curves
suggests A can learn more
information about the target

H(XT)

f(—;ff2)
f?

fff2f—

15

Ongoing work

– Theoretical basis from our comprehensive analysis of the average

– Much to learn for complex functions

Analytical and data-driven evaluation
of complex functions

– Derive analytical expressions the
entropy

– Estimators suffer from the “curse of
dimensionality”

– Can project high-dimensional data
into lower-dimensional space

Mitigation strategies

– Synthetic inputs

– Modifying the function

– Adding noise (DP)

Alternate metrics

– (min-, g -, cross) entropies

16

Conclusions

Conclusions

– RSS for any number of parties

– Information disclosure analysis

– Number of interesting current/future research directions

17

Thank you!
Questions?

References

[AH17] P. Ah-Fat and M. Huth. “Secure Multi-party Computation: Information Flow of Outputs and Game Theory”. In: International
Conference on Principles of Security and Trust. 2017, pp. 71–92.

[Ali+13] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. “Secure Computation on Floating Point Numbers”. In: Network and
Distributed System Security Symposium (NDSS). 2013.

[Bac24] A. Baccarini. “New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis”. PhD
Thesis. University at Buffalo, 2024.

[BBZ24a] A. Baccarini, M. Blanton, and S. Zou. “Understanding Information Disclosure from Secure Computation Output: A
Comprehensive Study of Average Salary Computation”. In: ACM Transactions on Privacy and Security (TOPS) 28.1 (2024),
pp. 1–36.

[BBZ24b] A. Baccarini, M. Blanton, and S. Zou. “Understanding Information Disclosure from Secure Computation Output: A Study of
Average Salary Computation”. In: ACM CODASPY. 2024, pp. 187–198.

[BGY23] M. Blanton, M. T. Goodrich, and C. Yuan. “Secure and Accurate Summation of Many Floating-Point Numbers”. In:
Proceedings on Privacy Enhancing Technologies (PoPETs) 2023.3 (2023), pp. 432–445.

[Dam+19] I. Damg̊ard, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev. “New Primitives for Actively-Secure MPC
over Rings with Applications to Private Machine Learning”. In: IEEE Symposium on Security and Privacy (S&P). 2019,
pp. 1102–1120.

[Gao+17] W. Gao, S. Kannan, S. Oh, and P. Viswanath. “Estimating mutual information for discrete-continuous mixtures”. In:
Proceedings on Advances in Neural Information Processing Systems (NeurIPS) 30 (2017), pp. 5988–5999.

[ISN87] M. Ito, A. Saito, and T. Nishizeki. “Secret Sharing Schemes Realizing General Access Structures”. In: IEEE Global
Telecommunication Conference (GLOBECOM). 1987, pp. 99–102.

18

References

[Kel20] M. Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”. In: ACM Conference on Computer and
Communications Security (CCS). 2020, pp. 1575–1590.

[Mun11] J. D. Munoz. “Rapid path-planning algorithms for autonomous proximity operations of satellites”. PhD Thesis. University of
Florida, 2011.

[Rat+21] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran, and A. Rastogi. “SiRnn: A math library for secure
RNN inference”. In: IEEE Symposium on Security and Privacy (S&P). 2021, pp. 1003–1020.

[Rat+22] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and A. Rastogi. “SecFloat: Accurate Floating-Point meets
Secure 2-Party Computation”. In: IEEE Symposium on Security and Privacy (S&P). 2022, pp. 1553–1553.

[Sha79] A. Shamir. “How to Share a Secret”. In: Communications of the ACM 22.11 (1979), pp. 612–613.

[SVG24] S. Sasy, A. Vadapalli, and I. Goldberg. “PRAC: Round-Efficient 3-Party MPC for Dynamic Data Structures”. In: Proceedings
on Privacy Enhancing Technologies (PoPETs) 2024.3 (2024), pp. 692–714.

[Vir+18] J. Virgili-Llop, C. Zagaris, H. Park, R. Zappulla, and M. Romano. “Experimental evaluation of model predictive control and
inverse dynamics control for spacecraft proximity and docking maneuvers”. In: CEAS Space Journal 10 (2018), pp. 37–49.

[Zap+18] R. Zappulla, H. Park, J. Virgili-Llop, and M. Romano. “Real-time autonomous spacecraft proximity maneuvers and docking
using an adaptive artificial potential field approach”. In: IEEE Transactions on Control Systems Technology 27.6 (2018),
pp. 2598–2605.

[ZSB13] Y. Zhang, A. Steele, and M. Blanton. “PICCO: A general-purpose compiler for private distributed computation”. In: ACM
Conference on Computer and Communications Security (CCS). 2013, pp. 813–826.

19

Intuitive observations: maximum

Maximum

An adversary maximizes the information
learned by minimizing their influence.

fmax(x) = max
i

xi

– Inverse behavior for fmin(x)

|S| = 1

|S| = 2

|S| = 3

|S| = 4

|S| = 5
A participates

A not present
0 1 2 3 4 5 6 7

Input xA

2:0

2:2

2:4

2:6

2:8

3:0

E
nt
ro
py

(b
it
s)

H(XT)

Figure 4: Uniform U(0; 7), H(XT | XA = xA; O)

20

Intuitive observations: maximum

Maximum

An adversary maximizes the information
learned by minimizing their influence.

fmax(x) = max
i

xi

– Inverse behavior for fmin(x)

|S| = 1

|S| = 2

|S| = 3

|S| = 4

|S| = 5
A participates

A not present
−5 0 5

Input xA

−2

−1

0

1

2

3

E
nt
ro
py

(b
it
s)

H(XT)

Figure 4: Normal N (0; 4:0), H(XT | XA = xA; O)

20

Binary-to-arithmetic conversion (B2A)

– Often operate on individual bits of secrets, requiring conversion from Z2 → Z2k

– Prior works use RandBit [Dam+19], requires temporary computation in Z2k+2

– E.g., k = 8 requires 16-bit integers, doubling the communication

– Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n [Bac24]

1. t parties locally XOR a subset of their shares, enter result into computation

2. Remaining t + 1 parties “locally reshare” last share (all but one share is nonzero)

3. Compute XOR (in Z2k) of local XOR(s) and the last share as a tree

– Can use approach to generate shared random bits (RandBit) without Z2k+2

– Up to 6.5× faster for 3 parties, 2× faster for 5 parties

21

Floating-point representation

sign s mantissa (significand) mã = exponent e

ã = (1 − z) · (1 − 2s) · 2e ·m = (z; s; e;m)


1 if ã = 0
0 otherwise

[Ali+13,Rat+22]

q(+ 1)p1

Most operations are conceptually similar
to their integer equivalents...

– Comparisons [ã]
?
< [b̃]

– Multiplication [ã]·[b̃]
– Division [ã]=[b̃]

... except for addition [ã] + [b̃]

– Exponents, mantissas must be
obliviously aligned and normalized

– Comparisons, left/right shifts, prefix
ops, rounding, . . .

22

Differential privacy

“indistinguishable”
up to "

D with x

D without x
(D�)

Mechanism
M(D)

Mechanism
M(D�)

output

output

– Useful for large databases (think n ≥ 10,000)...

– ... but absolutely destroys the utility of the result (up to 100% error!)

– Our goal: first determine if a function discloses too much information
23

	Motivation
	General-purpose secure computation framework
	Information disclosure analysis
	Conclusions
	Appendix

