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Motivation for secure computation
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– Want to perform
computation on private data

– Employ cryptographic
techniques to compute
without “seeing” the data
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Last several decades of secure computation

– Emphasis has been on the techniques

– Efficiency, performance improvements

– Development tools to improve accessibility

Is this sufficient?
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A glimpse into the not-too-distant past. . .
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A glimpse into the not-too-distant past. . .

“There are many situations, however,

where the output of the protocol itself

may leak too much information. . . this

leakage seems to be acceptable to the

community, but this is a question that

needs to be addressed before any MPC

protocol can be securely deployed.”

[HWB14]

4



A broader view of secure computation

Conventional security definitions distinguish between
unauthorized and authorized leakage:

s1

s4

s5

f (s1; s2; s3; s4; s5)=o

s2

s3

Unauthorized leakage is eliminated
(by design)

– Nothing is disclosed
throughout the computation

Authorized (acceptable) leakage is
unconstrained

– Does the output contain
sensitive information?

– Can we quantify this leakage
in a meaningful way?
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A broader view of secure computation

Conventional security definitions distinguish between
unauthorized and authorized leakage:

s1

s4

s5s2

s3

“What can we learn
about s1, given our
inputs (s4; s5) and

the output o?”

Unauthorized leakage is eliminated
(by design)

– Nothing is disclosed
throughout the computation

Authorized (acceptable) leakage is
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Information disclosure analysis [Bac24, Part II]

– Develop an information-theoretic approach to quantify leakage

– Apply technique to a practically significant function(s)

– Determine and apply appropriate mitigation strategies

Function f evaluated
on private data
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Information disclosure analysis [Bac24, Part II]

– Develop an information-theoretic approach to quantify leakage

– Apply technique to a practically significant function(s)

– Determine and apply appropriate mitigation strategies

Leakage is not
sufficiently small

Leakage is
sufficiently small

Apply mitigation(s)Re-evaluate
leakage

Function f evaluated
on private data OR

Data-driven analysis

Analytical analysis

Run
computation

Determine
appropriate

mitigation(s)
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Establishing the setting

s1

s4
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P

s2

s3

Partition parties P into:

attackers A, targets T , spectators S
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Metric?

Model participant inputs by a random variable XPi

How to measure the information disclosed by the output?

Entropy!
C. Shannon. Photo: Alfred Eisenstaedt

Shannon
H(X) (discrete)

Differential
h(X) (continuous)
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Putting everything together

Attackers XA, targets XT , and spectators XS (vectors)

Treat the output as a random variable: f (XA;XT ;XS) = O

Attackers’ weighted average entropy [AH17]

H(XT | XA = xA; O)
how much information A learns

about T , given xA and O

Absolute entropy loss [BBZ24a; BBZ24b]

H(XT )−H(XT | XA = xA; O)
the total amount of information
disclosed about T , given xA and O

Absolute entropy loss ⇐⇒ mutual information between
XT and O (conditioned on XA)
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Case study: the average salary computation

– 2016 Boston gender pay gap survey

– Analyzed the private wages based
on gender and race using
multi-party computation

– Average (salary) computation

Source: Boston University, 2017

However, the average reduces to a sum:
f—(x) =

1
n (x1 + · · ·+ xn) −→ x1 + · · ·+ xn

O =
X

i
XTi

+
X

j
XAj

+
X

k
XSk
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Optimal attacker strategy

Are there certain input(s) an attacker can supply to maximize the
information they learn?

Claim

The information disclosure is independent of the attackers’
input(s).

– Intuition: an adversary can
“remove” their influence

– Not universally true
(depends on f )
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Single evaluation

– Model inputs by common
distributions:

– Poisson
– Uniform
– Gaussian
– Log-normal [Cao+22]

– For a single evaluation,
information disclosure is
independent of

– the distribution parameters
– the distribution itself

– Disclosure is proportional to
the number of spectators
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Figure 1: Absolute entropy loss (lower is better), 1 target
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Computing the average salary twice

– First study was a success

– Repeated the following year with
an extended set of participants

– Spectators present in the first,
second, and both evaluation(s)

– Correlated outputs

Source: Boston University, 2018
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– First study was a success

– Repeated the following year with
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– Spectators present in the first,
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An interesting question
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An interesting question

s1

s4

s5

o �

f (s2; s3; s4; s5)=o
�

“What happens if
everyone else participates
again, but without me?”

s2

s3
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Target participates in one or both evaluations

Vary the ratio of shared spectators
S1;2 to the (fixed) total number of
spectators

– Largest protection at 50%
overlap

– Undesirable disclosure at
extrema

Target’s initial entropy
After first evaluation
Participating in both comps.
Participating second comp. only
Participating first comp. only

1

0:00 0:25 0:50 0:75 1:00
Fraction of shared spectators

2:8

2:9

3:0

E
nt
ro
py

(b
it
s)

Figure 2: Conditional entropies, 6 total spectators, 1 target
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Next step: advanced statistical measures

What are some logical successors to the average?

– Order statistics (max/min, median)

fmax(x) = max
i

xi

– Variability measures (variance)

fff2(x) =
1
n

X
i
(xi − f—(x))

2

– Multidimensional functions

f(—;ff2)(x) = (f—(x); fff2(x))
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New functions =⇒ new challenges

Prior analysis leveraged properties of sums of RVs, closed-form
expressions of the entropy

Data-driven entropy estimators

Discrete
plug-in

Continuous
k-nearest neighbors

Problem

Function could produce
discrete outputs from
continuous inputs,
producing a “mixture”

Recall (from slide 9). . .

mutual information

⇔
absolute loss
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Intuitive observations: maximum

Maximum

An adversary maximizes the
information learned by minimizing
their influence.∗

∗Inverse behavior for the minimum

In fact, the information A learns is
bounded by observing the output,
without participating in fmax

– Proof is a work-in-progress
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– Proof is a work-in-progress

18



Intuitive observations: maximum

Maximum

An adversary maximizes the
information learned by minimizing
their influence.∗

∗Inverse behavior for the minimum

In fact, the information A learns is
bounded by observing the output,
without participating in fmax

|S| = 1

|S| = 2

|S| = 3

|S| = 4

|S| = 5
A participates

A not present

−5 0 5
Input xA

−2

−1

0

1

2

3

E
nt
ro
py

(b
it
s)

H(XT )

Figure 3: Normal N (0; 4), H(XT |XA = xA; O), 1 target

– Proof is a work-in-progress

18



Intuitive observations: maximum

Maximum

An adversary maximizes the
information learned by minimizing
their influence.∗

∗Inverse behavior for the minimum

In fact, the information A learns is
bounded by observing the output,
without participating in fmax

|S| = 1

|S| = 2

|S| = 3

|S| = 4

|S| = 5
A participates

A not present

−5 0 5
Input xA

−2

−1

0

1

2

3

E
nt
ro
py

(b
it
s)

H(XT )

Figure 3: Normal N (0; 4), H(XT |XA = xA; O), 1 target

– Proof is a work-in-progress

18



Ongoing work

Data-driven analysis serves as a “first pass” assessment of a
function’s suitability for secure computation

Further analysis of complex funcs.

– Derive analytical expressions
information disclosure

– Apply data-driven analysis to
broader functionalities

Mitigation strategies

– Adding noise (differential
privacy)

– Introducing synthetic inputs

– Modifying the function
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Conclusions and takeaways

– Despite decades of performance improvements, broader
privacy concerns remain that must be addressed prior to
deployment of secure computation

– Developed a framework for quantifying information disclosure
from secure computation outputs

– Computation designers can use this framework to determine
potential disclosure about participants’ inputs
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Thank you!
Questions?
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