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Motivation for secure computation

— Want to perform

computation on private data
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Motivation for secure computation

— Want to perform
computation on private data

— Employ cryptographic
techniques to compute
without “seeing” the data
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Last several decades of secure computation

— Emphasis has been on the techniques
— Efficiency, performance improvements

— Development tools to improve accessibility
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Is this sufficient?
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A glimpse into the not-too-distant past. . .

“There are many situations, however,
where the output of the protocol itself
may leak too much information. .. this
leakage seems to be acceptable to the
community, but this is a question that
needs to be addressed before any MPC
protocol can be securely deployed.”

[HWB14]



A broader view of secure computation

Conventional security definitions distinguish between
unauthorized and authorized leakage:
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A broader view of secure computation

Conventional security definitions distinguish between
unauthorized and authorized leakage:

Unauthorized leakage is eliminated
(by design)
— Nothing is disclosed
throughout the computation

“What can we learn
about s;, given our

Authorized (acceptable) leakage is

inputs (s4, s5) and unconstrained
the output o?” Sy .
\ — Does the output contain

sensitive information?

— Can we quantify this leakage

in a meaningful way?
S4



Information disclosure analysis [Bac24, Part 1]

— Develop an information-theoretic approach to quantify leakage
— Apply technique to a practically significant function(s)

— Determine and apply appropriate mitigation strategies

Function f evaluated
on private data
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Information disclosure analysis

[Bac24, Part Il]

— Develop an information-theoretic approach to quantify leakage

— Apply technique to a practically significant function(s)

— Determine and apply appropriate mitigation strategies

Function f evaluated
on private data

Analytical analysis

OR

Data-driven analysis

Leakage is not
sufficiently small
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Information disclosure analysis [Bac24, Part 1]

— Develop an information-theoretic approach to quantify leakage
— Apply technique to a practically significant function(s)

— Determine and apply appropriate mitigation strategies

Re-evaluate
leakage

Analytical analysis Leakage is not —
i Y sufficiently small

OR

Data-driven analysis Ll el — ML
4 sufficiently small computation

Apply mitigation(s)

Function f evaluated
on private data
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Establishing the setting

a5:0
S S5
S=P\(AUT) ACP

S3 Sy

Partition parties P into: attackers A, targets T, spectators S



Model participant inputs by a random variable Xp.

How to measure the information disclosed by the output?


https://www.themarginalian.org/2016/09/06/james-gleick-the-information-claude-shannon/

Model participant inputs by a random variable Xp.

How to measure the information disclosed by the output?

Entropy!

C. Shannon. Photo: Alfred Eisenstaedt

Shannon Differential
H(X) (discrete) | | h(X) (continuous)



https://www.themarginalian.org/2016/09/06/james-gleick-the-information-claude-shannon/

Putting everything together

Attackers X4, targets X1, and spectators Xg (vectors)
Treat the output as a random variable: f(Xa, X7, Xs) =0



Putting everything together

Attackers X4, targets X1, and spectators Xs (vectors)

Treat the output as a random variable: f(Xa, X7, Xs) =0

Attackers’ weighted average entropy [AH17]

how much information A learns
A0S |25 = 5 0) about T, given x4 and O

Absolute entropy loss [BBZ24a; BBZ24b]

the total amount of information

eSS (2= ) disclosed about T, given x4 and O

mutual information between

A O CUECLITLED = X7 and O (conditioned on X,)



Case study: the average salary computation

Mayor Walsh & Boston
— 2016 Boston gender pay gap survey Wome_n’s Workforce
Council Release 2016

— Analyzed the private wages based
on gender and race using Gender Wage Gap Report;

multi-party computation New Partnership with BU

_ Average (salary) computation Thursday, January 5, 2017 — Mayor Martin J. Walsh and
the Boston Women's Workforce Council (BWWC)

released the 2016 gender wage report and announced a

Source: Boston University, 2017
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Case study: the average salary computation

Mayor Walsh & Boston

— 2016 Boston gender pay gap survey Women's Workforce
— Analyzed the private wages based Council Release 2016
on gender and race using Gender Wage G_ap R_eport;
multi-party computation New Partnership with BU

_ Average (salary) computation Thursday, January 5, 2017 — Mayor Martin J. Walsh and
the Boston Women's Workforce Council (BWWC)

released the 2016 gender wage report and announced a

Source: Boston University, 2017

However, the average reduces to a sum:
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Optimal attacker strategy

Are there certain input(s) an attacker can supply to maximize the
information they learn?
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Optimal attacker strategy

Are there certain input(s) an attacker can supply to maximize the
information they learn?

Claim
The information disclosure is independent of the attackers’
input(s).

— Intuition: an adversary can
“remove” their influence

— Not universally true T
Sy 0=5+5+S3

(depends on f) 1}
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Single evaluation

— Model inputs by common
distributions:
— Poisson
— Uniform
— Gaussian

— Log-normal [Cao+22]
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Single evaluation

— Model inputs by common
distributions:
— Poisson
— Uniform
— Gaussian
— Log-normal [Cao+22]

— For a single evaluation,
information disclosure is
independent of

— the distribution parameters
— the distribution itself

— Disclosure is proportional to

the number of spectators

b —e— Pois(4)
067 . —— U(0,7)
e --v-- N(0,4)

-=¥-- |0ngw(1.67, 0.15)

No. spectators

Figure 1: Absolute entropy loss (lower is better), 1 target
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Computing the average salary twice

— First study was a success

— Repeated the following year with
an extended set of participants

Mayor Walsh & BWWC
Release 2017 Wage Gap
Report

The Boston Women's

BOSTON WOMEN'S
WORKFORCE COUNCIL
REPORT 2017

Workforce Council
released its 2017

Source: Boston University, 2018
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Computing the average salary twice

— First study was a success
— Repeated the following year with
an extended set of participants

— Spectators present in the first,
second, and evaluation(s)

— Correlated outputs

Mayor Walsh & BWWC
Release 2017 Wage Gap
Report

The Boston Women's
Workforce C i BOSTON WOMEN'S
orkiorce Lounc WORKFORCE COUNCIL

released its 2017 REPORT 2017

Source: Boston University, 2018
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An interesting question
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An interesting question

“What happens if
everyone else participates
again, but without me?”

A
Q
\
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Target participates in one or both evaluations

Vary the ratio of shared spectators
512 to the (fixed) total number of
spectators

--- Target’s initial entropy

______ A Gk Ve ERER 0.00 0.25 0.50 0.75 1.00

—»— Participating in both comps. Fraction of shared spectators

-®- Participating second comp. only
©— Participating first comp. only

Figure 2: Conditional entropies, 6 total spectators, 1 target
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Target participates in one or both evaluations

Vary the ratio of shared spectators
512 to the (fixed) total number of
spectators

— Largest protection at 50%
overlap

— Undesirable disclosure at
extrema

--- Target’s initial entropy
______ After first evaluation 0.00 0.2.5 0.50 0.75 1.00
%— Participating in both comps. Fraction of shared spectators

-®- Participating second comp. only

Figure 2: Conditional entropies, 6 total spectators, 1 target
©— Participating first comp. only
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Next step: advanced statistical measures

What are some logical successors to the average?
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Next step: advanced statistical measures

What are some logical successors to the average?

— Order statistics (max/min, median)

fmax(X) = max x;
1

— Variability measures (variance)

fa(0) = 13 (6 — fu)?

— Multidimensional functions

fuo?) (%) = (£u(x), 52(x))

16



New functions = new challenges

Prior analysis leveraged properties of sums of RVs, closed-form
expressions of the entropy
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New functions = new challenges

Prior analysis leveraged properties of sums of RVs, closed-form

expressions of the entropy

Function could produce
discrete outputs from
continuous inputs,
producing a “mixture”

[Data-driven entropy estimators]

Discrete Continuous
plug-in k-nearest neighbors

Computer Science > Information Theory

[Submitted on 19 Sep 2017 (v1), last revised 9 Oct 2018 (this version, v3)]
Estimating Mutual Information for Discrete-
Continuous Mixtures

Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
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New functions = new challenges

Prior analysis leveraged properties of sums of RVs, closed-form

expressions of the entropy

[Data-driven entropy estimators]

Discrete Continuous
plug-in k-nearest neighbors

Computer Science > Information Theory

[Submitted on 19 Sep 2017 (v1), last revised 9 Oct 2018 (this version, v3)]
Estimating Mutual Information for Discrete-
Continuous Mixtures

Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Function could produce
discrete outputs from
continuous inputs,
producing a “mixture”

Recall (from slide 9). ..

mutual information
=
absolute loss

17



Intuitive observations: maximum

Maximum

An adversary maximizes the
information learned by minimizing
their influence.*

*Inverse behavior for the minimum
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Intuitive observations: maximum

Maximum

An adversary maximizes the
information learned by minimizing
their influence.*

*Inverse behavior for the minimum
In fact, the information A learns is

bounded by observing the output,
without participating in fax

e — ISI=1  — S|=4
participates Is| =2 IS| =5
---- A not present
— sI=3

H(Xr)
-~
- — e —— - ———® = £ &
&
——————— A +
o
”
@
——t

0 1 2 3 4 5 6 7
Input x4

Figure 3: Uniform U(0,7), H(XT|Xa = xa, 0), 1 target
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Intuitive observations: maximum

Maximum 3] HX)
An adversary maximizes the 2
information learned by minimizing 7 |
o o e
their influence.* =
o § o
*Inverse behavior for the minimum E .
In fact, the information A learns is ol
bounded by observing the output, = | ———— !
. . . . 0 =5 0 5
without participating in fax Input x4
— —Sl=1 — is|=4 Figure 3: Normal N(0,4), H(XT|XA = x4, 0), 1 target
—— A participates
— |5|=2 1S|=5
---- A not present
— |5|=3
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Intuitive observations: maximum

Maximum

An adversary maximizes the
information learned by minimizing
their influence.*

" *Inverse behavior for the minimum

In fact, the information A learns is

bounded by observing the output,
without participating in fax

e — ISI=1  — S|=4
participates Is| =2 IS| =5
---- A not present
— sI=3

— Proof is a work-in-progress

Entropy (bits)

Input xa

Figure 3: Normal N'(0,4), H(XT|Xa = xa, O), 1 target
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Ongoing work

Data-driven analysis serves as a “first pass” assessment of a
function’s suitability for secure computation
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Ongoing work

Data-driven analysis serves as a “first pass” assessment of a
function’s suitability for secure computation

Further analysis of complex funcs. Mitigation strategies

— Derive analytical expressions — Adding noise (differential
information disclosure privacy)

— Apply data-driven analysis to — Introducing synthetic inputs

broader functionalities — Modifying the function

19



Conclusions and takeaways

— Despite decades of performance improvements, broader
privacy concerns remain that must be addressed prior to
deployment of secure computation

— Developed a framework for quantifying information disclosure
from secure computation outputs

— Computation designers can use this framework to determine
potential disclosure about participants’ inputs

20



Thank youl!

Questions?
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