Secure Multi-party Computation for Privacy-preserving Machine Learning

Alessandro Baccarini, PhD

abaccarini@proton.me abaccarini.github.io

January 27, 2025

Motivation for PPML

Multi-party computation and PPML General-purpose secure computation Application: quantized neural networks

Security considerations and conclusions

Al is everywhere ...

Al is everywhere ...

... but what about "private" AI?

- No privacy for the **client** (data owner)
- No privacy for the model owner if roles are reversed
- How can we provide privacy for both parties?

Multi-party computation

- No information disclosed other than the output
- FHE, garbled circuits, secret sharing

Multi-party computation

- No information disclosed other than the output
- FHE, garbled circuits, secret sharing

Multi-party computation

- No information disclosed other than the output
- FHE, garbled circuits, secret sharing

Multi-party computation

- No information disclosed other than the output
- FHE, garbled circuits, secret sharing
- -(n, t)-threshold scheme
 - $\leq t$ cannot recover the secret
- semi-honest (passive), honest majority

Fields \mathbb{F}_p	(Shamir [Sha79])	Rings \mathbb{Z}_{2^k}	(Ito et al. [ISN87])

f(2)

f(1)

Fields \mathbb{F}_p (Shamir [Sha79]) **Rings** \mathbb{Z}_{2k} - Shares are points on a **polynomial** Reconstruction through interpolation (requires multiplicative inverses) - Reliance on large-number libraries $f(x) = s + a_1 x + \dots + a_t x^t \pmod{p}$ $P_i ightarrow (i, f(i))$

n

n

(Ito et al. [ISN87])

Fields \mathbb{F}_p

(Shamir [Sha79])

- Shares are points on a **polynomial**
- Reconstruction through interpolation (requires multiplicative inverses)
- Reliance on large-number libraries

Rings \mathbb{Z}_{2^k}

(Ito et al. [ISN87])

- Each party maintains replicated shares
- Compatible with native CPU instructions
- Existing works limited to n = 3, 4

$$s = s_{\{1\}} + s_{\{2\}} + s_{\{3\}} \pmod{2^k}$$

Fields \mathbb{F}_p

(Shamir [Sha79])

- Shares are points on a **polynomial**
- Reconstruction through interpolation (requires multiplicative inverses)
- Reliance on large-number libraries

Rings \mathbb{Z}_{2^k}

(Ito et al. [ISN87])

- Each party maintains replicated shares
- Compatible with native CPU instructions
- Existing works limited to n = 3, 4

Fields \mathbb{F}_p

(Shamir [Sha79])

- Shares are points on a **polynomial**
- Reconstruction through interpolation (requires multiplicative inverses)
- Reliance on large-number libraries

Rings \mathbb{Z}_{2^k}

(Ito et al. [ISN87])

- Each party maintains replicated shares
- Compatible with native CPU instructions
- Existing works limited to n = 3, 4

RSS framework for any *n* [Bac24]

From ML to PPML: neural networks

Layer operations convolution, transformer, ...

Activation functions ReLU, sigmoid, ...

input X weights W result Y

From ML to PPML: neural networks

Layer operations convolution, transformer, ...

Pooling (optional) max, average, ...

Activation functions ReLU, sigmoid, ...

input X weights W result Y

All distill to "simple" operations

From ML to PPML: neural networks

Layer operations convolution, transformer, ...

Pooling (optional) max, average, ... Activation functions ReLU, sigmoid, ...

input X weights W result Y

All distill to "simple" operations

Building Blocks reconstruction, mult., inputting private values

Building Blocks reconstruction. mult.. inputting private values

Composite Operations

share conversion. shared randomness generation. comparisons, shifts, division

 $\mathbb{Z}_2 \longrightarrow \mathbb{Z}_{2^k}$

RandBit() edaBit(k) MSB([a]) EQZ([a]) $[a/2^{m}], [a \cdot 2^{m}]$ [a]/[b]

complexity

Composite Operations

share conversion. shared

randomness generation.

Building Blocks reconstruction, mult., inputting private values

complexity

Building Blocks reconstruction, mult., inputting private values

Composite Operations

share conversion, shared randomness generation, comparisons, shifts, division

$$\mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2^{k}} [Bac24, \S4.2.1]$$

$$\mathbb{R}andBit() edaBit(k)$$

$$MSB([a]) EQZ([a])$$

$$[a/2^{m}], [a \cdot 2^{m}]$$

$$[a]/[b]$$

$$\mathbb{P}oly(log) rounds/$$

$$\operatorname{comm. in } k, t$$

Floating-point Computation floating-point arithmetic, function approximation $[\tilde{a}] < [\tilde{b}]$ $[\tilde{a}] \cdot [\tilde{b}] [\tilde{a}] / [\tilde{b}]$ complexity $[\tilde{a}]+[\tilde{b}]$ $f(x) \approx \begin{cases} \sum_{i} (a_i x + b_i) \\ \sum_{i} \frac{f^{(i)}(0)}{i!} x^i \end{cases}$ many, *many* rounds, expensive comm.

Building Blocks reconstruction, mult., inputting private values

Composite Operations

share conversion, shared randomness generation, comparisons, shifts, division

$$\mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{2^{k}} [Bac24, \S4.2.1]$$

$$\mathbb{R}andBit() edaBit(k)$$

$$MSB([a]) EQZ([a])$$

$$[a/2^{m}], [a \cdot 2^{m}]$$

$$[a]/[b]$$

$$\mathbb{P}oly(log) rounds/$$

$$\operatorname{comm. in } k, t$$

Floating-point Computation floating-point arithmetic, function approximation $[\tilde{a}] < [\tilde{b}]$ $[\tilde{a}] \cdot [\tilde{b}] [\tilde{a}] / [\tilde{b}]$ $[\tilde{a}]+[\tilde{b}]$ $f(x) \approx \begin{cases} \sum_{i} (a_i x + b_i) \\ \sum_{i} \frac{f^{(i)}(0)}{i!} x^i \end{cases}$ many, many rounds, expensive comm.

Application: quantized neural networks

- Neural network, but smaller
- Values are mapped to the range [0, 255] with *scale* $m \in \mathbb{R}$ and zero point *z*

Application: quantized neural networks

- Neural network, but smaller
- Values are mapped to the range [0, 255] with *scale* $m \in \mathbb{R}$ and zero point *z*

$$\operatorname{ReLU6}\left(\underbrace{\sum_{i} x_{i} w_{i} + b}_{y}\right) \implies 0 \leq \underbrace{z_{y} + \frac{m_{x} m_{w}}{m_{y}} \sum_{i} \left(\left(\bar{x}_{i} - z_{x}\right) \left(\bar{w}_{i} - z_{w}\right) + \bar{b}\right)}_{\bar{y}} \leq 255$$

- Certain activations (like ReLU6) become free by careful selection of m_y , z_y
- Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

Application: quantized neural networks

- Neural network, but $_{\mbox{\tiny smaller}}$
- Values are mapped to the range [0, 255] with *scale* $m \in \mathbb{R}$ and zero point *z*

$$\operatorname{ReLU6}\left(\underbrace{\sum_{i} x_{i} w_{i} + b}_{y}\right) \implies 0 \leq \underbrace{z_{y} + \frac{m_{x} m_{w}}{m_{y}} \sum_{i} \left((\bar{x}_{i} - z_{x}) \left(\bar{w}_{i} - z_{w}\right) + \bar{b}\right)}_{\bar{y}} \leq 255$$

- Certain activations (like ReLU6) become free by careful selection of m_y , z_y
- Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

Bottleneck

Uses k = 72 to accommodate for the 63-bit truncation.

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the end of each layer.

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the end of each layer.

$$\begin{array}{rcl} 0 & \leq & z_{y} & + & \frac{m_{x}m_{w}}{m_{y}}\sum_{i}\left(\left(\bar{x}_{i}-z_{x}\right)\left(\bar{w}_{i}-z_{w}\right)+\bar{b}\right) & \leq & 255 \\ & & & \downarrow \\ 0 & \leq & \frac{m_{y}z_{y}}{m_{x}m_{w}} & + & \sum_{i}\left(\left(\bar{x}_{i}-z_{x}\right)\left(\bar{w}_{i}-z_{w}\right)+\bar{b}\right) & \leq & \frac{255m_{y}}{m_{x}m_{w}} \end{array}$$

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the end of each layer.

$$\begin{array}{rcl} 0 & \leq & z_{y} & + & \frac{m_{x}m_{w}}{m_{y}}\sum_{i}\left(\left(\bar{x}_{i}-z_{x}\right)\left(\bar{w}_{i}-z_{w}\right)+\bar{b}\right) & \leq & 255 \\ & & & \downarrow \\ 0 & \leq & \frac{m_{y}z_{y}}{m_{x}m_{w}} & + & \sum_{i}\left(\left(\bar{x}_{i}-z_{x}\right)\left(\bar{w}_{i}-z_{w}\right)+\bar{b}\right) & \leq & \frac{255m_{y}}{m_{x}m_{w}} \end{array}$$

- Over 2× reduction in ring size! $(72 \longrightarrow 32)$
- Updated parameters become part of the model, distributed by model owner
- No impact on accuracy

- Can achieve PPML by applying MPC, yielding robust security guarantees
- Does MPC alleviate all AI privacy concerns?

- Can achieve PPML by applying MPC, yielding robust security guarantees
- Does MPC alleviate all AI privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)

- Membership inference attacks
- Model poisoning/inversion, \ldots

Typically involves training a "shadow model"

- Can achieve PPML by applying MPC, yielding robust security guarantees
- Does MPC alleviate all AI privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)

- Membership inference attacks
- Model poisoning/inversion, \ldots

Typically involves training a "shadow model"

"Other" MPC threats?

But by definition, MPC is perfectly secure!

- Can achieve PPML by applying MPC, yielding robust security guarantees
- Does MPC alleviate all AI privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)

- Membership inference attacks
- Model poisoning/inversion, ...

Typically involves training a "shadow model"

"Other" MPC threats?

But by definition, MPC is perfectly secure!

Information disclosure analysis [Bac24, Part II]

Thank you! Questions?

References

[Ali+13]	M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. "Secure Computation on Floating Point Numbers". In: Network and Distributed System Security Symposium (NDSS). 2013.
[Bac24]	A. Baccarini. "New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis". PhD Thesis. University at Buffalo, 2024.
[BBY23]	A. Baccarini, M. Blanton, and C. Yuan. "Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning". In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2023.1 (2023), pp. 608–626.
[BGY23]	M. Blanton, M. T. Goodrich, and C. Yuan. "Secure and Accurate Summation of Many Floating-Point Numbers". In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2023.3 (2023), pp. 432–445.
[Dam+19]	I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev. "New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning". In: <i>IEEE Symposium on Security and Privacy (S&P)</i> . 2019, pp. 1102–1120.
[DEK20]	A. Dalskov, D. Escudero, and M. Keller. "Secure Evaluation of Quantized Neural Networks". In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2020.4 (2020), pp. 355–375.
[ISN87]	M. Ito, A. Saito, and T. Nishizeki. "Secret Sharing Schemes Realizing General Access Structures". In: IEEE Global Telecommunication Conference (GLOBECOM). 1987, pp. 99–102.
[Rat+22]	D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and A. Rastogi. "SecFloat: Accurate Floating-Point meets Secure 2-Party Computation". In: <i>IEEE Symposium on Security and Privacy (S&P)</i> . 2022, pp. 1553–1553.
[Sha79]	A. Shamir. "How to Share a Secret". In: Communications of the ACM 22.11 (1979), pp. 612–613.

Binary-to-arithmetic conversion (B2A)

- Often operate on individual bits of secrets, requiring conversion from $\mathbb{Z}_2 \to \mathbb{Z}_{2^k}$
- Prior works use **RandBit** [Dam+19], requires temporary computation in $\mathbb{Z}_{2^{k+2}}$
 - E.g., k = 8 requires 16-bit integers, **doubling** the communication
- Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n

- 1. t parties locally XOR a subset of their shares, enter result into computation
- 2. Remaining t + 1 parties "locally reshare" last share (all but one share is nonzero)
- 3. Compute XOR (in \mathbb{Z}_{2^k}) of local XOR(s) and the last share as a tree
- Can use approach to generate shared random bits (RandBit) without $\mathbb{Z}_{2^{k+2}}$
- Up to 6.5 \times faster for 3 parties, 2 \times faster for 5 parties

[Bac24]

Floating-point protocols

- Prior protocols designed for computation on **integer**¹ inputs...
- But what about floating-point?

¹Fixed-point computation directly follows from our integer constructions.