Secure Multi-party Computation for
Privacy-preserving Machine Learning

Alessandro Baccarini, PhD

¥ abaccarini@proton.me
@ abaccarini. github.io

January 27, 2025

mailto:abaccarini@proton.me
https://abaccarini.github.io/

Motivation for PPML

Multi-party computation and PPML
General-purpose secure computation

Application: quantized neural networks

Security considerations and conclusions

Al is everywhere...

Apple O
Intellige Amazon Q Meta Al

4 Grok Gemlnl
» Copilot: Claude. ChatGPT

Al is everywhere...

Apple O
Intellige Amazon Q Meta Al

A Grok Gemlnl
» Copilot: Claude. ChatGPT
.. but what about “private” Al?

Forbes [R O L am——

Generative Al Under . .) . .
Attack: Flowbreaking —Security News This Heek: Microsoft's New Recall Al Tool May Be a The privacy paradox with Al

World v BusinessV Markets v Sustainabllity v Legal v Breakingv

Exploits Trigger Data acy Nig By Gai Sher and Ariela Benchlouch
Plas: US surellance reportelytrgets pro-Palstinan protstes, he Bl arests a manfor

l.eaks & , and stalkerware October 31, 2023115 PM EDT - Updated a year ago

= Elfetlon
nature Q search Logi FORBES > > T RTATIC o
Explore content ¥ About the journal v Publish with us v A/\l l{isl\’s ll]Clll(lC l)le;l |I= BuSiheSS
cature > carce quids > artcle Poisoning And Model Businesses warned not to use open Al

. A to prevent data leaks

caneER GuIDE | 04 september 202 Corruption .

Steve Banker Contri

Intellectual property and data privacy:

. . @ < Slack Al can be tricked into leaking data from
the hiddenrisks of Al T rivate channels via prompt injection
Google’s Gemini Al Exposes p p ptinj
i ificial-intelli ly demi User Chats in Search Results: Whack yakety-yak app chaps rapped for security crack
but ight not all their i risks Here’s What Happened? PR —— ezt Ag 224 9z3uTC

By Amanda Heidt

a DARKREADING

From Gmail to Word, your privacy
settings and Al are entering into a
new relationship

Privacy Anxiety Pushes Microsoft Recall Al Release Again

s f X in =

Editor's Choice

@-

Core motivational example: healthcare

§!°|$’”

client model owner M

Core motivational example: healthcare

Use your model to
classify this sample!
= L=

& S"’|$’”

client model owner M

Core motivational example: healthcare

A §!°|$’”

client model owner M

Core motivational example: healthcare

& BIRE

> D-l:ll

-
client fm(s) iﬂ'{]ﬂ model owner M

— No privacy for the client (data owner)

— No privacy for the model owner if roles are reversed

— How can we provide privacy for both parties?

Enter privacy-preserving machine learning (PPML)

client

EII

model owner

Enter privacy-preserving machine learning (PPML)

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

— No information disclosed
other than the output

— FHE, garbled circuits,
secret sharing

client [s]

E (=]
O
=R

model owner

Enter privacy-preserving machine learning (PPML)

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

— No information disclosed
other than the output

— FHE, garbled circuits,
secret sharing

EII

model owner

Enter privacy-preserving machine learning (PPML)

client

EII

model owner

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

— No information disclosed
other than the output

— FHE, garbled circuits,
secret sharing

Enter privacy-preserving machine learning (PPML)

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

— No information disclosed
other than the output

— FHE, garbled circuits,
secret sharing

— (n, t)-threshold scheme

— < t cannot recover the
secret

client

[\
(| ‘...
EII o| [M]

model owner : .
— semi-honest (passive),

honest majority

Secret sharing (SS) techniques

Fields F, (Shamir [Sha79]) Rings Z« (Ito et al. [ISN87])

Secret sharing (SS) techniques

Fields F, (Shamir [Sha79]) Rings Z« (Ito et al. [ISN87])

— Shares are points on a polynomial

— Reconstruction through interpolation
(requires multiplicative inverses)

— Reliance on large-number libraries
f(x)=s+aix+ -+ axt (mod p)
P — (i, £(i))

Secret sharing (SS) techniques

Fields F, (Shamir [Sha79]) Rings Z« (Ito et al. [ISN87])
— Shares are points on a polynomial — Each party maintains replicated shares
— Reconstruction through interpolation — Compatible with native CPU

(requires multiplicative inverses) instructions
— Reliance on large-number libraries — Existing works limited to n = 3,4
f(x)=s+aix+ -+ axt (mod p) s =sqy + Spy + sy (mod 2kY
P — (i, f(i))

Secret sharing (SS) techniques

Fields F, (Shamir [Sha79]) Rings Z« (Ito et al. [ISN87])
— Shares are points on a polynomial — Each party maintains replicated shares
— Reconstruction through interpolation — Compatible with native CPU

(requires multiplicative inverses) instructions
— Reliance on large-number libraries — Existing works limited to n = 3,4
f(X) =S5+ ax+ -+ axt (mOd P) s = sq1y + 523 + 5033 (mod 2k)

o U0 S

S(235(3y S{1p5{3}y S{1} {2}

Secret sharing (SS) techniques

Fields F, (Shamir [Sha79]) Rings Z« (Ito et al. [ISN87])
— Shares are points on a polynomial — Each party maintains replicated shares
— Reconstruction through interpolation — Compatible with native CPU

(requires multiplicative inverses) instructions
— Reliance on large-number libraries — Existing works limited to n = 3,4
f(X) =S5+ ax+ -+ axt (mOd P) s = sq1y + 523 + 5033 (mod 2k)

o U0 S

S(235(3y S{1p5{3}y S{1} {2}
>
1 2 e n RSS framework for any n [Bac24]

From ML to PPML: neural networks

Layer operations Pooling (optional) Activation functions
convolution, transformer, ... max, average, ... RelLU, sigmoid, ...
5 o I 1

o(x) = Tre—x

input X weights W result Y 0

From ML to PPML: neural networks

Layer operations Pooling (optional) Activation functions
convolution, transformer, ... max, average, ... RelLU, sigmoid, ...
- o I N
o(x) = 7=
input X weights W result Y 0

All distill to “simple”’ operations

From ML to PPML: neural networks

Layer operations Pooling (optional) Activation functions
convolution, transformer, ... max, average, ... RelLU, sigmoid, ...
max 3

g\ h; n o(x) = H%

input X weights W result Y 0
All distill to “simple”’ operations
matrix multiplication comparisons approximations

? —rT T

y = ZXiWi s (a > b) — I\/ISB(a—b) ;/n

(a L b) - EQZ(a—b) oo &(x)~o(x)
0

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,
inputting private values

c-[a]
[a]+([p]

Open(a])
2} 18] /

Input(a) \

1 round,
O(t) comm.

} local, “free”

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,
inputting private values

Composite Operations
share conversion, shared
randomness generation,

c:[a] P comparisons, shifts, division
[a]+[b]} local, “free 2 — 7
Open([a]) RandBi edaBit(k 3
o 0 B |8
/ l MSB(a)) EQZ(ia) 3
\ [a/2™], [a-2™] g
fnput() 21/18] v

1 round,
O(t) comm.

Poly(log) rounds/
comm. in k, t

Towards general-purpose secure computation

Building Blocks Composite Operations
reconstruction, mult., share conversion, shared
inputting private values randomness generation,
c[a] } . comparisons, shifts, division
local, “free
[a]+([p] Zy —> Lo [Bac24, §4.2.1]

Open([a]) @ RandBit() edaBit(k)
[a]-[b] /l MSB([a]) EQZ([a])

\ [a/27], [a-2"]
Input(a) [a]/[b] Y

1 round, Poly(log) rounds/
e .
O(t) comm. comm. in k, t

Aixs|dwod

<€

Towards general-purpose secure computation

Building Blocks Composite Operations Floating-point
reconstruction, mult., share conversion, shared Computation
inputting private values randomness generation, floating-point arithmetic,
c-[a] comparisons, shifts, division function approximation
b } local, “free” P
[a]+[b] Lo — Zipk [Bac24, §4.2.1] [a]<[b]
Open([4]) ® RandBit() edaBit(k) g [a1B] [4]/[B]
[a]-[£] = 51415
/ MSB([a]) EQZ([a]) s [8]+[B]
NG [a/27], [a-27] 2 Z;(zi,)X(z;bi)
f(x) ~ 2 ,,'—IX,'
Input(a) [a]/[b] A LUT...

1 round, Poly(log) rounds/ many, many rounds,
—_— . —_— .
O(t) comm. comm. in k, t expensive comm.

Towards general-purpose secure computation

Building Blocks Composite Operations Floating-point
reconstruction, mult., share conversion, shared Computation
inputting private values randomness generation, floating-point arithmetic,
c-[a] comparisons, shifts, division function approximation
b } local, “free” P
[a]+[b] Lo — Zipk [Bac24, §4.2.1] [a]<[b]
Open([4]) ® RandBit() edaBit(k) g [a1B] [4]/[B]
[a]-[£] = 51415
/ MSB([a]) EQZ([a]) = [3]+(B]
NG [a/27], [a-27] 2 Z;(zi,)X(z;bi)
f(x) ~ 2 ,,'—IX,'
Input(a) [a]/[b] A LUT...

1 round, Poly(log) rounds/ many, many rounds,
—_— . —_— .
O(t) comm. comm. in k, t expensive comm.

Application: quantized neural networks

— Neural network, but smatter

— Values are mapped to the range
[0, 255] with scale m € R and zero
point z

Xmin 0 Xmax
1 n 1
1 + —R
P " ANV LI AN AN NN AN
VNN NN T NN L N T N
|/// N1/ N1/ N/ N1/ ARV
/ \yy/ \yy/ \y/ \y/ \
\/ \/ \[/
v v ¥ v v v
]]
} } } } } -7
0 z 255

10

Application: quantized neural networks

Xmin 0 Xmax
1 "]
— Neural network, but smatter I —R
P " ANV LI AN AN NN AN
— Values are mapped to the range VION NN N N N
; |// \\|// \\|// \\|// \\|// \\l
[0, 255] with scale m € R and zero Z Wi/ Y W M/ \
0 * \% V \% \% ‘
point z } : . . 7
0 z 255
meW - = T
ReLU6(E ,x,-w,-—l—b) = 0<z,+ E . ((x,-—zx) (Wi—zy) +b) < 255
Iv/ my !
Y v

— Certain activations (like ReLU6) become free by careful selection of m,, z,
— Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

10

Application: quantized neural networks

Xmin 0 Xmax
L . 1l
— Neural network, but smatter I —R
P " ANV LI AN AN NN AN
— Values are mapped to the range VION NN N N N
; |// \\|// \\|// \\|// \\|// \\l
[0, 255] with scale m € R and zero Z Wi/ Y W M/ \
0 * \% V \% \% ‘
point z } : . . 7
0 z 255
ReLUG(S xiwi+b) = 0< 2+ 2 S ((%—2z) (Wi—zw) +b) < 255
1 m 1
———— y
Y v

— Certain activations (like ReLU6) become free by careful selection of m,, z,
— Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

Bottleneck

Uses k = 72 to accommodate for the 63-bit truncation.

10

Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.

11

Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.

0 < z + mfni”y”vzi((i,-—zx)(ﬁ/,-—zw)er) < 255

ﬂ I

0 < Moy Zi((i,-—zx)(VT//—Zw)+_b) < iffrrnnvt

- mxmy

11

Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.

0 < z + '",Xni’;”"zi((i,-fzx)(v?,-fzw)er) < 255

ﬂ I

0 < M Zi((i,-—zx)(VT//—Zw)+_b) < ivSXSrrnnvt

- mxmy

— Over 2x reduction in ring size! (72 — 32)
— Updated parameters become part of the model, distributed by model owner

— No impact on accuracy

11

Conclusion: the solution to Al privacy concerns?

— Can achieve PPML by applying MPC, yielding robust security guarantees

— Does MPC alleviate all Al privacy concerns?

12

Conclusion: the solution to Al privacy concerns?

— Can achieve PPML by applying MPC, yielding robust security guarantees

— Does MPC alleviate all Al privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)
— Membership inference attacks
— Model poisoning/inversion, ...

Typically involves training a “shadow
model”

12

Conclusion: the solution to Al privacy concerns?

— Can achieve PPML by applying MPC, yielding robust security guarantees

— Does MPC alleviate all Al privacy concerns?

Adversarial (vanilla) ML “Other” MPC threats?
Black box computation (oracle) — But by definition, MPC is perfectly
— Membership inference attacks secure!

— Model poisoning/inversion, ...

Typically involves training a “shadow
model”

12

Conclusion: the solution to Al privacy concerns?

— Can achieve PPML by applying MPC, yielding robust security guarantees

— Does MPC alleviate all Al privacy concerns?

Adversarial (vanilla) ML “Other” MPC threats?
Black box computation (oracle) — But by definition, MPC is perfectly
— Membership inference attacks secure!
— Model poisoning/inversion, ... Information disclosure analysis
Typically involves training a “shadow [Bac24, Part 1]

model”

12

Thank youl!

Questions?

References

[Ali+13] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. “Secure Computation on Floating Point Numbers”. In: Network and
Distributed System Security Symposium (NDSS). 2013

[Bac24] A. Baccarini. “New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis”. PhD
Thesis. University at Buffalo, 2024.

[BBY23] A. Baccarini, M. Blanton, and C. Yuan. “Multi-Party Replicated Secret Sharing over a Ring with Applications to
Privacy-Preserving Machine Learning”. In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2023.1 (2023),
pp. 608-626

[BGY23] M. Blanton, M. T. Goodrich, and C. Yuan. “Secure and Accurate Summation of Many Floating-Point Numbers”. In:

Proceedings on Privacy Enhancing Technologies (PoPETs) 2023.3 (2023), pp. 432-445

[Dam+19] |. Damgard, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev. “New Primitives for Actively-Secure MPC
over Rings with Applications to Private Machine Learning”. In: |[EEE Symposium on Security and Privacy (S&P). 2019,
pp. 1102-1120

[DEK20] A. Dalskov, D. Escudero, and M. Keller. “Secure Evaluation of Quantized Neural Networks” . In: Proceedings on Privacy
Enhancing Technologies (PoPETs) 2020.4 (2020), pp. 355-375.

[ISN87] M. Ito, A. Saito, and T. Nishizeki. “Secret Sharing Schemes Realizing General Access Structures”. In: IEEE Global
Telecommunication Conference (GLOBECOM). 1987, pp. 99-102

[Rat+22] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and A. Rastogi. “SecFloat: Accurate Floating-Point meets
Secure 2-Party Computation”. In: IEEE Symposium on Security and Privacy (S&P). 2022, pp. 1553-1553

[Sha79] A. Shamir. “How to Share a Secret”. In: Communications of the ACM 22.11 (1979), pp. 612-613

13

Binary-to-arithmetic conversion (B2A)

— Often operate on individual bits of secrets, requiring conversion from Zy — Zo«
— Prior works use RandBit [Dam+19], requires temporary computation in Zok+2
— E.g., k = 8 requires 16-bit integers, doubling the communication

— Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n [Bac24]

1. t parties locally XOR a subset of their shares, enter result into computation
2. Remaining t + 1 parties “locally reshare” last share (all but one share is nonzero)
3. Compute XOR (in Zy«) of local XOR(s) and the last share as a tree

— Can use approach to generate shared random bits (RandBit) without Zyk+2
— Up to 6.5x faster for 3 parties, 2x faster for 5 parties

14

Floating-point protocols

— Prior protocols designed for computation on integer! inputs. ..
— But what about floating-point?

—1— P ¥ q(+ 1) ——
3 — | sign s || exponent e mantissa (significand) m
_J

=

a=(1-2z)-(1—2s)-2°- m=(z,5,e,m)

l {1 if5=0 [Ali+13,Rat+22]

0 otherwise

lFiXed-point computation directly follows from our integer constructions.

15

	Motivation for PPML
	Multi-party computation and PPML
	General-purpose secure computation
	Application: quantized neural networks

	Security considerations and conclusions
	Appendix

