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AI is everywhere...

... but what about “private” AI?

3



AI is everywhere...

... but what about “private” AI?
3



4



Core motivational example: healthcare

model owner Mclient
s

– No privacy for the client (data owner)

– No privacy for the model owner if roles are reversed

– How can we provide privacy for both parties?
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Enter privacy-preserving machine learning (PPML)

model owner

client

M

s

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

– No information disclosed
other than the output

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the
secret

– semi-honest (passive),
honest majority
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Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Existing works limited to n = 3; 4
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From ML to PPML: neural networks

ReLU, sigmoid, . . .
Activation functions

0

ff(x) = 1
1+e−x

Layer operations
convolution, transformer, . . .

input X weights W result Y

max

Pooling (optional)
max, average, . . .
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From ML to PPML: neural networks

All distill to “simple” operations

y =
X

i

xiwi + b

0

ff̃(x) ≈ ff(x)

ReLU, sigmoid, . . .
Activation functions

0

ff(x) = 1
1+e−x

Layer operations
convolution, transformer, . . .

input X weights W result Y

max

Pooling (optional)
max, average, . . .

matrix multiplication comparisons approximations

(a
?
> b) → MSB(a−b)

(a
?
= b) → EQZ(a−b)
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Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

c·[a]
[a]+[b]

ff
local, “free”

1 round,
O(t) comm.

P3

P1

P2

[a]·[b]
Open([a])

Input(a)
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Application: quantized neural networks

– Neural network, but smaller

– Values are mapped to the range
[0; 255] with scale m ∈ R and zero
point z

z0 255

xmaxxmin

R

Z

0

ReLU6
“X

i
xiwi+b

| {z }
y

”
=⇒ 0 ≤ zy+

mxmw

my

X
i

`
(x̄i−zx) (w̄i−zw )+b̄

´

| {z }
ȳ

≤ 255

– Certain activations (like ReLU6) become free by careful selection of my ; zy

– Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

Bottleneck

Uses k = 72 to accommodate for the 63-bit truncation.
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Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.

0 ≤ zy + mxmw
my

P
i

`
(x̄i − zx) (w̄i − zw ) + b̄

´
≤ 255

ww
ww

0 ≤ my zy
mxmw

+
P

i

`
(x̄i − zx) (w̄i − zw ) + b̄

´
≤ 255my

mxmw

– Over 2× reduction in ring size! (72 −→ 32)

– Updated parameters become part of the model, distributed by model owner

– No impact on accuracy
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Conclusion: the solution to AI privacy concerns?

– Can achieve PPML by applying MPC, yielding robust security guarantees

– Does MPC alleviate all AI privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)

– Membership inference attacks

– Model poisoning/inversion, . . .

Typically involves training a “shadow
model”

“Other” MPC threats?

– But by definition, MPC is perfectly
secure!

Information disclosure analysis
[Bac24, Part II]
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Thank you!
Questions?
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Binary-to-arithmetic conversion (B2A)

– Often operate on individual bits of secrets, requiring conversion from Z2 → Z2k

– Prior works use RandBit [Dam+19], requires temporary computation in Z2k+2

– E.g., k = 8 requires 16-bit integers, doubling the communication

– Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n [Bac24]

1. t parties locally XOR a subset of their shares, enter result into computation

2. Remaining t + 1 parties “locally reshare” last share (all but one share is nonzero)

3. Compute XOR (in Z2k ) of local XOR(s) and the last share as a tree

– Can use approach to generate shared random bits (RandBit) without Z2k+2

– Up to 6.5× faster for 3 parties, 2× faster for 5 parties
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Floating-point protocols

– Prior protocols designed for computation on integer1 inputs. . .

– But what about floating-point?

sign s mantissa (significand) mã = exponent e

p1 q(+ 1)

ã = (1 − z) · (1 − 2s) · 2e ·m = (z; s; e;m)


1 if ã = 0
0 otherwise

[Ali+13,Rat+22]

1Fixed-point computation directly follows from our integer constructions.
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