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— No privacy for the client (data owner)

— No privacy for the model owner if roles are reversed

— How can we provide privacy for both parties?
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Enter privacy-preserving machine learning (PPML)

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

— No information disclosed
other than the output

— FHE, garbled circuits,
secret sharing

— (n, t)-threshold scheme

— < t cannot recover the
secret
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From ML to PPML: neural networks

Layer operations Pooling (optional)  Activation functions
convolution, transformer, ... max, average, ... RelLU, sigmoid, ...
max 3

g\ h; n o(x) = H%

input X weights W result Y 0
All distill to “simple”’ operations
matrix multiplication comparisons approximations
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(a L b) - EQZ(a—b) oo &(x)~o(x)
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Towards general-purpose secure computation

Building Blocks Composite Operations
reconstruction, mult., share conversion, shared
inputting private values randomness generation,
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Application: quantized neural networks

— Neural network, but smatter

— Values are mapped to the range
[0, 255] with scale m € R and zero
point z
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— Certain activations (like ReLU6) become free by careful selection of m,, z,
— Prior works [DEK20]: fixed-point mult., followed by truncation and clamping
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Xmin 0 Xmax
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— Neural network, but smatter I —R
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— Certain activations (like ReLU6) become free by careful selection of m,, z,
— Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

Bottleneck

Uses k = 72 to accommodate for the 63-bit truncation.
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Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.
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Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.

0 < z + '",Xni’;”"zi((i,-fzx)(v?,-fzw)er) < 255

ﬂ I

0 < M Zi((i,-—zx)(VT//—Zw)+_b) < ivSXSrrnnvt

- mxmy

— Over 2x reduction in ring size! (72 — 32)
— Updated parameters become part of the model, distributed by model owner

— No impact on accuracy
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— Can achieve PPML by applying MPC, yielding robust security guarantees

— Does MPC alleviate all Al privacy concerns?
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Conclusion: the solution to Al privacy concerns?

— Can achieve PPML by applying MPC, yielding robust security guarantees

— Does MPC alleviate all Al privacy concerns?

Adversarial (vanilla) ML “Other” MPC threats?
Black box computation (oracle) — But by definition, MPC is perfectly
— Membership inference attacks secure!
— Model poisoning/inversion, ... Information disclosure analysis
Typically involves training a “shadow [Bac24, Part 1]

model”
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Thank youl!

Questions?
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Binary-to-arithmetic conversion (B2A)

— Often operate on individual bits of secrets, requiring conversion from Zy — Zo«
— Prior works use RandBit [Dam+19], requires temporary computation in Zok+2
— E.g., k = 8 requires 16-bit integers, doubling the communication

— Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n [Bac24]

1. t parties locally XOR a subset of their shares, enter result into computation
2. Remaining t + 1 parties “locally reshare” last share (all but one share is nonzero)
3. Compute XOR (in Zy«) of local XOR(s) and the last share as a tree

— Can use approach to generate shared random bits (RandBit) without Zyk+2
— Up to 6.5x faster for 3 parties, 2x faster for 5 parties

14



Floating-point protocols

— Prior protocols designed for computation on integer! inputs. ..
— But what about floating-point?

—1— P ¥ q(+ 1) ——
3 — | sign s || exponent e mantissa (significand) m
_J

=

a=(1-2z)-(1—2s)-2°- m=(z,5,e,m)

l {1 if5=0 [Ali+13,Rat+22]

0 otherwise

lFiXed-point computation directly follows from our integer constructions.
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