
Secure Multi-party Computation for
Privacy-preserving Machine Learning

Alessandro Baccarini, PhD

abaccarini@proton.me
� abaccarini.github.io

January 27, 2025

1

mailto:abaccarini@proton.me
https://abaccarini.github.io/

Outline

Motivation for PPML

Multi-party computation and PPML

General-purpose secure computation

Application: quantized neural networks

Security considerations and conclusions

2

AI is everywhere...

... but what about “private” AI?

3

AI is everywhere...

... but what about “private” AI?
3

4

Core motivational example: healthcare

model owner Mclient
s

– No privacy for the client (data owner)

– No privacy for the model owner if roles are reversed

– How can we provide privacy for both parties?

5

Core motivational example: healthcare

Use your model to
classify this sample!

model owner Mclient
s

– No privacy for the client (data owner)

– No privacy for the model owner if roles are reversed

– How can we provide privacy for both parties?

5

Core motivational example: healthcare

model owner Mclient

s

– No privacy for the client (data owner)

– No privacy for the model owner if roles are reversed

– How can we provide privacy for both parties?

5

Core motivational example: healthcare

model owner Mclient

s

fM(s)

– No privacy for the client (data owner)

– No privacy for the model owner if roles are reversed

– How can we provide privacy for both parties?

5

Enter privacy-preserving machine learning (PPML)

model owner

client

M

s

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

– No information disclosed
other than the output

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the
secret

– semi-honest (passive),
honest majority

6

Enter privacy-preserving machine learning (PPML)

model owner

client

[M]

[s]

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

– No information disclosed
other than the output

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the
secret

– semi-honest (passive),
honest majority

6

Enter privacy-preserving machine learning (PPML)

Πf[M]
([s])

model owner

client

M{1}

M{3}

s{2}

s{1}

s{3}

M{2}

[M]

[s]

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

– No information disclosed
other than the output

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the
secret

– semi-honest (passive),
honest majority

6

Enter privacy-preserving machine learning (PPML)

model owner

client
f{2}

f{1}

f{3}

[M]

f{1}+f{2}+f{3}=fM(s)

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

– No information disclosed
other than the output

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the
secret

– semi-honest (passive),
honest majority

6

Enter privacy-preserving machine learning (PPML)

model owner

client

s{2};M{2}

[M]

[s]

Multi-party computation

Multiple participants jointly
evaluating an arbitrary
function on private inputs.

– No information disclosed
other than the output

– FHE, garbled circuits,
secret sharing

– (n; t)-threshold scheme

– ≤ t cannot recover the
secret

– semi-honest (passive),
honest majority

6

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Existing works limited to n = 3; 4

7

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

s

1 2 n

f (1) f (2)

f (n)

: : : : : :

f (x) = s + a1x + · · · + atx
t (mod p)

Pi → (i ; f (i))

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Existing works limited to n = 3; 4

7

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

s

1 2 n

f (1) f (2)

f (n)

: : : : : :

f (x) = s + a1x + · · · + atx
t (mod p)

Pi → (i ; f (i))

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Existing works limited to n = 3; 4

s = s{1} + s{2} + s{3} (mod 2k)

7

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

s

1 2 n

f (1) f (2)

f (n)

: : : : : :

f (x) = s + a1x + · · · + atx
t (mod p)

Pi → (i ; f (i))

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Existing works limited to n = 3; 4

s = s{1} + s{2} + s{3} (mod 2k)s = s{1} + s{2} + s{3} (mod 2k)

s{2}; s{3} s{1}; s{3} s{1}; s{2}

P3P1 P2

7

Secret sharing (SS) techniques

Fields Fp (Shamir [Sha79])

– Shares are points on a polynomial

– Reconstruction through interpolation
(requires multiplicative inverses)

– Reliance on large-number libraries

s

1 2 n

f (1) f (2)

f (n)

: : : : : :

f (x) = s + a1x + · · · + atx
t (mod p)

Pi → (i ; f (i))

Rings Z2k (Ito et al. [ISN87])

– Each party maintains replicated shares

– Compatible with native CPU
instructions

– Existing works limited to n = 3; 4

s = s{1} + s{2} + s{3} (mod 2k)s = s{1} + s{2} + s{3} (mod 2k)

s{2}; s{3} s{1}; s{3} s{1}; s{2}

P3P1 P2

RSS framework for any n [Bac24]
7

From ML to PPML: neural networks

ReLU, sigmoid, . . .
Activation functions

0

ff(x) = 1
1+e−x

Layer operations
convolution, transformer, . . .

input X weights W result Y

max

Pooling (optional)
max, average, . . .

8

From ML to PPML: neural networks

All distill to “simple” operations

ReLU, sigmoid, . . .
Activation functions

0

ff(x) = 1
1+e−x

Layer operations
convolution, transformer, . . .

input X weights W result Y

max

Pooling (optional)
max, average, . . .

8

From ML to PPML: neural networks

All distill to “simple” operations

y =
X

i

xiwi + b

0

ff̃(x) ≈ ff(x)

ReLU, sigmoid, . . .
Activation functions

0

ff(x) = 1
1+e−x

Layer operations
convolution, transformer, . . .

input X weights W result Y

max

Pooling (optional)
max, average, . . .

matrix multiplication comparisons approximations

(a
?
> b) → MSB(a−b)

(a
?
= b) → EQZ(a−b)

8

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

c·[a]
[a]+[b]

ff
local, “free”

1 round,
O(t) comm.

P3

P1

P2

[a]·[b]
Open([a])

Input(a)

9

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

c·[a]
[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) rounds/
comm. in k; t

MSB([a]) EQZ([a])
com

plexity

Z2 −→ Z2k

[a]·[b]
Open([a])

Input(a)

RandBit() edaBit(k)

9

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

c·[a]
[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) rounds/
comm. in k; t

MSB([a]) EQZ([a])
com

plexity

Z2 −→ Z2k [Bac24, §4.2.1]

[a]·[b]
Open([a])

Input(a)

RandBit() edaBit(k)

9

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

Floating-point
Computation

floating-point arithmetic,
function approximation

f (x) ≈

8
><
>:

P
i (aix+bi)P
i
f (i)(0)
i!

x i

LUT : : :

c·[a]
[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) rounds/
comm. in k; t

many, many rounds,
expensive comm.

[ã]<[b̃]

[ã]+[b̃]MSB([a]) EQZ([a])

[ã]·[b̃] [ã]=[b̃]

com
plexity

Z2 −→ Z2k [Bac24, §4.2.1]

[a]·[b]
Open([a])

Input(a)

RandBit() edaBit(k)

9

Towards general-purpose secure computation

Building Blocks
reconstruction, mult.,

inputting private values

Floating-point
Computation

floating-point arithmetic,
function approximation

f (x) ≈

8
><
>:

P
i (aix+bi)P
i
f (i)(0)
i!

x i

LUT : : :

c·[a]
[a]+[b]

ff
local, “free”

Composite Operations
share conversion, shared
randomness generation,

comparisons, shifts, division

[a=2m]; [a·2m]

[a]=[b]

1 round,
O(t) comm.

P3

P1

P2

Poly(log) rounds/
comm. in k; t

many, many rounds,
expensive comm.

[ã]<[b̃]

[ã]+[b̃]MSB([a]) EQZ([a])

[ã]·[b̃] [ã]=[b̃]

com
plexity

Z2 −→ Z2k [Bac24, §4.2.1]

[a]·[b]
Open([a])

Input(a)

RandBit() edaBit(k)

9

Application: quantized neural networks

– Neural network, but smaller

– Values are mapped to the range
[0; 255] with scale m ∈ R and zero
point z

z0 255

xmaxxmin

R

Z

0

ReLU6
“X

i
xiwi+b

| {z }
y

”
=⇒ 0 ≤ zy+

mxmw

my

X
i

`
(x̄i−zx) (w̄i−zw)+b̄

´

| {z }
ȳ

≤ 255

– Certain activations (like ReLU6) become free by careful selection of my ; zy

– Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

Bottleneck

Uses k = 72 to accommodate for the 63-bit truncation.

10

Application: quantized neural networks

– Neural network, but smaller

– Values are mapped to the range
[0; 255] with scale m ∈ R and zero
point z

z0 255

xmaxxmin

R

Z

0

ReLU6
“X

i
xiwi+b

| {z }
y

”
=⇒ 0 ≤ zy+

mxmw

my

X
i

`
(x̄i−zx) (w̄i−zw)+b̄

´

| {z }
ȳ

≤ 255

– Certain activations (like ReLU6) become free by careful selection of my ; zy

– Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

Bottleneck

Uses k = 72 to accommodate for the 63-bit truncation.

10

Application: quantized neural networks

– Neural network, but smaller

– Values are mapped to the range
[0; 255] with scale m ∈ R and zero
point z

z0 255

xmaxxmin

R

Z

0

ReLU6
“X

i
xiwi+b

| {z }
y

”
=⇒ 0 ≤ zy+

mxmw

my

X
i

`
(x̄i−zx) (w̄i−zw)+b̄

´

| {z }
ȳ

≤ 255

– Certain activations (like ReLU6) become free by careful selection of my ; zy

– Prior works [DEK20]: fixed-point mult., followed by truncation and clamping

Bottleneck

Uses k = 72 to accommodate for the 63-bit truncation.

10

Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.

0 ≤ zy + mxmw
my

P
i

`
(x̄i − zx) (w̄i − zw) + b̄

´
≤ 255

ww
ww

0 ≤ my zy
mxmw

+
P

i

`
(x̄i − zx) (w̄i − zw) + b̄

´
≤ 255my

mxmw

– Over 2× reduction in ring size! (72 −→ 32)

– Updated parameters become part of the model, distributed by model owner

– No impact on accuracy

11

Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.

0 ≤ zy + mxmw
my

P
i

`
(x̄i − zx) (w̄i − zw) + b̄

´
≤ 255

ww
ww

0 ≤ my zy
mxmw

+
P

i

`
(x̄i − zx) (w̄i − zw) + b̄

´
≤ 255my

mxmw

– Over 2× reduction in ring size! (72 −→ 32)

– Updated parameters become part of the model, distributed by model owner

– No impact on accuracy

11

Application: quantized neural networks

Solution (Baccarini et al. [BBY23])

Fold scales into clamping operation, and compute a much smaller truncation at the
end of each layer.

0 ≤ zy + mxmw
my

P
i

`
(x̄i − zx) (w̄i − zw) + b̄

´
≤ 255

ww
ww

0 ≤ my zy
mxmw

+
P

i

`
(x̄i − zx) (w̄i − zw) + b̄

´
≤ 255my

mxmw

– Over 2× reduction in ring size! (72 −→ 32)

– Updated parameters become part of the model, distributed by model owner

– No impact on accuracy

11

Conclusion: the solution to AI privacy concerns?

– Can achieve PPML by applying MPC, yielding robust security guarantees

– Does MPC alleviate all AI privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)

– Membership inference attacks

– Model poisoning/inversion, . . .

Typically involves training a “shadow
model”

“Other” MPC threats?

– But by definition, MPC is perfectly
secure!

Information disclosure analysis
[Bac24, Part II]

12

Conclusion: the solution to AI privacy concerns?

– Can achieve PPML by applying MPC, yielding robust security guarantees

– Does MPC alleviate all AI privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)

– Membership inference attacks

– Model poisoning/inversion, . . .

Typically involves training a “shadow
model”

“Other” MPC threats?

– But by definition, MPC is perfectly
secure!

Information disclosure analysis
[Bac24, Part II]

12

Conclusion: the solution to AI privacy concerns?

– Can achieve PPML by applying MPC, yielding robust security guarantees

– Does MPC alleviate all AI privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)

– Membership inference attacks

– Model poisoning/inversion, . . .

Typically involves training a “shadow
model”

“Other” MPC threats?

– But by definition, MPC is perfectly
secure!

Information disclosure analysis
[Bac24, Part II]

12

Conclusion: the solution to AI privacy concerns?

– Can achieve PPML by applying MPC, yielding robust security guarantees

– Does MPC alleviate all AI privacy concerns?

Adversarial (vanilla) ML

Black box computation (oracle)

– Membership inference attacks

– Model poisoning/inversion, . . .

Typically involves training a “shadow
model”

“Other” MPC threats?

– But by definition, MPC is perfectly
secure!

Information disclosure analysis
[Bac24, Part II]

12

Thank you!
Questions?

References

[Ali+13] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. “Secure Computation on Floating Point Numbers”. In: Network and
Distributed System Security Symposium (NDSS). 2013.

[Bac24] A. Baccarini. “New Directions in Secure Multi-Party Computation: Techniques and Information Disclosure Analysis”. PhD
Thesis. University at Buffalo, 2024.

[BBY23] A. Baccarini, M. Blanton, and C. Yuan. “Multi-Party Replicated Secret Sharing over a Ring with Applications to
Privacy-Preserving Machine Learning”. In: Proceedings on Privacy Enhancing Technologies (PoPETs) 2023.1 (2023),
pp. 608–626.

[BGY23] M. Blanton, M. T. Goodrich, and C. Yuan. “Secure and Accurate Summation of Many Floating-Point Numbers”. In:
Proceedings on Privacy Enhancing Technologies (PoPETs) 2023.3 (2023), pp. 432–445.

[Dam+19] I. Damg̊ard, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev. “New Primitives for Actively-Secure MPC
over Rings with Applications to Private Machine Learning”. In: IEEE Symposium on Security and Privacy (S&P). 2019,
pp. 1102–1120.

[DEK20] A. Dalskov, D. Escudero, and M. Keller. “Secure Evaluation of Quantized Neural Networks”. In: Proceedings on Privacy
Enhancing Technologies (PoPETs) 2020.4 (2020), pp. 355–375.

[ISN87] M. Ito, A. Saito, and T. Nishizeki. “Secret Sharing Schemes Realizing General Access Structures”. In: IEEE Global
Telecommunication Conference (GLOBECOM). 1987, pp. 99–102.

[Rat+22] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and A. Rastogi. “SecFloat: Accurate Floating-Point meets
Secure 2-Party Computation”. In: IEEE Symposium on Security and Privacy (S&P). 2022, pp. 1553–1553.

[Sha79] A. Shamir. “How to Share a Secret”. In: Communications of the ACM 22.11 (1979), pp. 612–613.

13

Binary-to-arithmetic conversion (B2A)

– Often operate on individual bits of secrets, requiring conversion from Z2 → Z2k

– Prior works use RandBit [Dam+19], requires temporary computation in Z2k+2

– E.g., k = 8 requires 16-bit integers, doubling the communication

– Blanton et al. [BGY23] eliminated this requirement for 3-party RSS

Generalization of [BGY23] to any n [Bac24]

1. t parties locally XOR a subset of their shares, enter result into computation

2. Remaining t + 1 parties “locally reshare” last share (all but one share is nonzero)

3. Compute XOR (in Z2k) of local XOR(s) and the last share as a tree

– Can use approach to generate shared random bits (RandBit) without Z2k+2

– Up to 6.5× faster for 3 parties, 2× faster for 5 parties

14

Floating-point protocols

– Prior protocols designed for computation on integer1 inputs. . .

– But what about floating-point?

sign s mantissa (significand) mã = exponent e

p1 q(+ 1)

ã = (1 − z) · (1 − 2s) · 2e ·m = (z; s; e;m)

1 if ã = 0
0 otherwise

[Ali+13,Rat+22]

1Fixed-point computation directly follows from our integer constructions.

15

	Motivation for PPML
	Multi-party computation and PPML
	General-purpose secure computation
	Application: quantized neural networks

	Security considerations and conclusions
	Appendix

