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(Secure) multi-party computation, in a nutshell

s1

s2

s3 s4

s5

f (s1; s2; s3; s4; s5)

Multi-party computation (MPC)

Multiple participants jointly evaluating an
arbitrary function on private inputs while
revealing only the output(s).

– FHE, garbled circuits, secret sharing

– Variety of practical applications
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What do we really mean by “secure”?

s1

s2

s3 s4

s5

o

– No information disclosed
throughout computation, other
than the output

– But does the output itself
contain sensitive information?

– Can we quantify this disclosure
in a meaningful way?
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Information disclosure analysis [Bac24, Part II]

– Develop an information-theoretic approach to measure disclosure

– Apply technique to a practically significant function (the average)

– Extend analysis to complex statistical functions

– Determine and apply appropriate mitigation strategies

Function f evaluated
on private data
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Determine
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Formal setting

s1

s2

s3 s4

s5

P

– How do we distinguish
participants from each other?

– Partition parties P into:

– attackers A
– targets T
– spectators S
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Formal setting
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Metric?

– Model participant i ’s inputs by a random variable XPi (XP=(XP1 ; : : : ; XPm))

– How to measure the information disclosed by the output?

Entropy!

Shannon (discrete):

H(X) = −
X
x∈X

Pr(X = x) log Pr(X = x)

Differential (continuous):

h(X) = −
Z
X
f (x) log f (x) dx

C. Shannon. Photo: Alfred Eisenstaedt, 1963
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Putting everything together

– Attackers XA, targets XT , and spectators XS
– Treat the output as a random variable: f (XA;XT ;XS) = O

Attackers’ weighted average entropy [AH17]

H(XT | XA = xA; O) =⇒ “how much information A learns
about the target, given xA and O”

Absolute entropy loss [BBZ24a; BBZ24b]

H(XT )−H(XT | XA = xA; O) =⇒ “the total amount of information dis-
closed about the target, given xA and O”

Absolute entropy loss ⇐⇒ mutual information between XT and O
(conditioned on XA = xA)
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Case study: the average salary computation

– 2016 Boston gender pay gap survey

– Analyzed the private wages based
on gender and race using MPC

– Average salary computation

Source: Boston University, 2017

However, the average reduces to a sum: f—(x) =
1
n (x1 + · · ·+ xn) −→ x1 + · · ·+ xn

O =
X

i
XTi +

X
j
XAj +

X
k
XSk

9
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Optimal attacker strategy

Claim

The information disclosure is independent of the attackers’ input(s):

H(XT | XA = xA; O) = H(XT |
X

i
XTi +

X
k
XSk )

– Intuition: an adversary can
“remove” their influence

– May not always be the case
(depending on f )
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Single evaluation

– Model inputs by common
distributions:

– Poisson
– Uniform
– Gaussian
– Log-normal [Cao+22]

– For a single evaluation, information
disclosure is independent of

– the distribution parameters
– the distribution itself

– Disclosure is proportional to the
number of spectators

CL
T
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Figure 1: Absolute entropy loss (lower is better)
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“What about differential privacy?”

D with x

D without x
(D�)

Mechanism
M(D)

Mechanism
M(D�)

output�

output

“indistinguishable”

– Useful for large databases (e.g., n ≥ 10,000) . . .
– . . . but destroys the utility of the result for small n (up to 100% error!)
– Our goal: first determine if a function discloses too much information
– We have an effective means of lowering disclosure for the average (increasing participants)
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Computing the average salary twice

– First wage gap study was successful

– Conducted again the following year
with an extended set of participants

– Combination of new and old parties
participating in the computation

– Spectators present in the first, second,
and both evaluation(s)

Source: Boston University, 2018
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An interesting question
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An interesting question

s1

s2

s3 s4

s5

o �

f (s2; s3; s4; s5)=o
�

“What happens if
everyone else participates
again, but without me?”
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Target participates in one or both evaluations

– Vary the ratio of shared spectators S1;2

to the (fixed) total number of spectators

– Largest protection at 50% overlap

– Undesirable disclosure at extrema

Target’s initial entropy
After first evaluation
Participating in both comps.
Participating second comp. only
Participating first comp. only

1

0:00 0:25 0:50 0:75 1:00
Fraction of shared spectators

2:8

2:9

3:0

E
nt
ro
py

(b
it
s)

Figure 2: Conditional entropies, 6 total spectators
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Next step: advanced statistical measures

What are some logical successors to the average?

– Order statistics (max/min, median)

fmax(x) = max
i

xi

– Variability measures (variance)

fff2(x) =
1
n

X
i
(xi − f—(x))

2

– Multidimensional functions

f(—;ff2)(x) = (f—(x); fff2(x))
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New functions =⇒ new challenges

Prior analysis leveraged properties of sums of RVs, closed-form expressions of the entropy

Data-driven estimators of entropy

Discrete
plug-in [Pan03]

Continuous
k-NN [GOV18]

Problem

Function could produce discrete
outputs from continuous inputs,
producing a “mixture”

But recall (from slide 8). . .

mutual information

⇔
absolute loss
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Intuitive observations: maximum

Maximum

An adversary maximizes the information
learned by minimizing their influence.∗

∗Inverse behavior for the minimum

– In fact, the information A learns is
bounded by observing the output,
without participating in fmax
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Surprising observations: simultaneous release

Variance and mean release

The total disclosure from individual function outputs f— and fff2 is at least the
amount of information disclosed from a joint release f(—;ff2)?

Hf— +Hfff2

?
≥ H(f—;fff2)

– The quantity Hf— +Hfff2 itself
isn’t practically significant

– Gap between the curves implies
A can learn more information
about the target

H(XT )

Hf—

19
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function outputs f— and fff2 .

Hf— +Hfff2
≤ H(f—;fff2)

– The quantity Hf— +Hfff2 itself
isn’t practically significant

– Gap between the curves implies
A can learn more information
about the target

– Does there exist some nontrivial
function(s) f? that leaks the
target’s information entirely?

H(XT )

Hf(—;ff2)

Hf?

Hfff2Hf—
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Ongoing work

– Theoretical framework from our comprehensive analysis of the average

– Much to learn for complex functions

Further analysis of complex functions

– Derive analytical expressions the entropy

– Estimators suffer from the “curse of
dimensionality”

– Can project high-dimensional data into
lower-dimensional space

Mitigation strategies

– Adding noise (DP)

– Synthetic inputs

– Modifying the function

Alternate metrics

– (min-, g -, cross) entropies
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Conclusions

– Developed an approach for quantifying information disclosure from secure computation
– Comprehensively analyzed a practically significant function (the average)
– Applied our analysis to complex statistical measures through data-driven techniques

Other research interests

– MPC techniques and applications
[Bac24, Part I], [BBY23]

– MPC compiler development

– Threshold FHE
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Thank you!
Questions?
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