
Evolution of Format Preserving Encryption on IoT Devices: FF1+

Abstract

The Internet of Things (IoT) is a network of
interconnected low-power sensing devices designed to
interact and communicate with each other. To avoid
compromising user privacy, it is necessary to encrypt
these channels. We introduce Format Preserving
Encryption (FPE), a modern cryptosystem that allows
full customization of the ciphertext, while offering
comparable security to AES. To gauge the performance
of FPE, we compare the NIST-approved FF1 algorithm
against several symmetric and asymmetric encryption
schemes on a Raspberry Pi 3. While suitable for
small plaintexts, FF1 breaks down for longer character
strings. We propose a modified algorithm, FF1+, that
implements dynamic round selection and key scheduling.
Significant performance improvements are observed in
our results, thus demonstrating FF1+ as a viable
cryptosystem for IoT devices.

1. Introduction

The Internet of Things (IoT) is a hybrid network that
consists of interconnected objects, services, humans,
and devices that can communicate, share data, and
information to reach a common goal in various areas and
applications [1]. IoT is rapidly growing, reaching 23.14
billion devices as of 2018, and is projected to reach 75
billion uniquely identifiable devices by 2025 [2].

As the popularity of IoT has grown, determining
ways of providing security and resilience to these
networks has been a subject of a great deal of research
(see [3, 4, 5, 6, 7, 8, 9, 10]). To ensure user privacy
and prevent the types of attacks outlined in [8, 4], it
is necessary to secure the channel of communication
between IoT devices. Traditionally, this is accomplished
by simply choosing an encryption scheme and
implementing it on the devices. Existing methods of
securing IoT include using classic algorithms that have
been deemed secure, including AES-256, RSA, and
elliptic curve cryptography (ECC) [5, 7, 11].

As simple as it would seem to use the most
secure encryption algorithm available, the size and
extraordinarily limited processing power of IoT devices
are of primary concern. Symmetric algorithms (AES,
Triple-DES (3DES), RC4, etc.) do not require
significant computational power and offer adequate
security [12, 13, 14], but require complete decryption
before the data can be analyzed. Asymmetric algorithms
(RSA, ECC, etc.) are the most secure means
of encryption [15, 16], but are too computationally
demanding to be considered viable for our purposes (as
demonstrated in our results in Sec. 7), despite providing
partial homomorphic capabilities.

We propose the use of Format Preserving Encryption
(FPE), a technique that takes advantage of the lightness
of symmetric algorithms, while providing unique
features that allow for complete end-user customization.
FPE allows us to tweak the ciphertext produced in a
manner that can be used for analysis without needing
to be decrypted, a feature not currently possible with
classic symmetric algorithms.

We will be testing the NIST-recommended [17] FPE
algorithm FF1 on a Raspberry Pi 3 to directly simulate
encryption on an IoT device. We compare FF1 with
several symmetric (AES, 3DES, RC4) and asymmetric
(RSA with 2000- and 3000-bit keys) algorithms. Our
programs are designed to record the time required to
encrypt and decrypt an arbitrary plaintext ranging from
10 to 1000 characters. We demonstrate that, for small
plaintext lengths, FF1 offers comparable performance to
classic algorithms; however, it suffers severe breakdown
for longer plaintexts (greater than 100 characters).

To resolve the aforementioned breakdown, we
propose our modified FPE algorithm FF1+, an evolution
of the FF1 algorithm designed specifically for IoT
devices. It takes advantage of dynamic round selection
according to plaintext size. Furthermore, the algorithm
determines the necessary key size required to maximize
performance while maintaining optimal security.

In Sec. 2, we briefly discuss the basics of IoT and
current security principles. Sec. 3 contains a review

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/59603
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 1628

Alessandro N. Baccarini
Fordham Center for Cybersecurity

Fordham University, New York, NY
abaccarini@fordham.edu

Thaier Hayajneh
Fordham Center for Cybersecurity

Fordham University, New York, NY
thayajneh@fordhan.edu



of cryptographic algorithms used to secure the IoT. We
introduce FPE in Sec. 4 and the FF1 algorithm in Sec. 5.
We justify our methodology for choosing this algorithm
in Sec. 6. To test the performance of FF1, we run
a series of comparisons against classic algorithms and
discuss our results in Sec. 7. Our modified algorithm
FF1+ is outlined in 8 alongside and additional testing
and analysis. We propose future areas of research for
this field and conclude our analysis in Sec. 9.

2. The IoT: An Overview

It is necessary to provide a general overview of
how IoT networks are structured. An IoT network’s
architecture is divided into three layers: perception,
network, and application [7, 3, 18]. Each layer in the
architecture is vulnerable to various attacks (active or
passive), and must be appropriately secured to protect
user privacy.

Perception - Also commonly referred to as the
sensing layer, the perception layer collects data from
the area surrounding the devices. Technologies such
as RFID, WSN, GPS, and NFC form the primary
funcitonalites of the layer. If necessary, information
processing occurs here prior to network transmission.
For LANs, IoT node processing will also take place here
[7].

Most attacks will occur at this layer, with
vulnerabilities stemming from weak wireless signals,
physical features (JTAG, UART, etc.), and the inherent
dynamic nature of an IoT network [7, 19]. The
perception layer can be exploited by replay attacks
(identity information is spoofed, altered, or replayed
to one or more devices on a network), timing attacks
(an adversary recovers an encryption key by passively
analyzing the time required to execute algorithms), and
node capture attacks (a node is compromised and all it’s
information is leaked) [3].

Network - The network (transport) layer performs
data transmission to the application layer through
wired/wireless LANs. Technologies such as cloud
computing, internet gateways, switching and routing
operate using FTTx, 3G/4G, Wifi, Bluetooth, Zigbee,
and UMB [1]. The layer can be divided into three
sub layers: the access network (provides access to the
perception layer), the core network (responsible for data
transmission, typically the Internet), and the local area
network (group of devices that share a wireless link) [4].

Denial of Service (DoS) attacks are very common
in the network layer, as adversaries can flood the
devices with packets or fake data. Additionally,
man-in-the-middle attacks can occur at this layer by
intercepting signals in between nodes [3].

Application - Lastly, the application layer functions
differently depending on the use case scenario.
Generally, it uses the processed data it received
through the network layer [4]. Here, we can see
implementations of IoT systems in smart homes, remote
patient monitoring, logistics management, identity
authentication, and so on [18]. As with other application
technologies (e.g. web), this layer is susceptible to
malicious code injection, DoS attacks, spear phishing,
and sniffing [3].

3. IoT Cryptosystems

Having evaluated the current standard IoT
architecture and types of attacks each layer is vulnerable
to, we present an overview of the current state of
encryption technologies. The primary defense against
most attack vectors is implementing known secure
cryptographic protocols. Different algorithms are
implemented at the core of a cryptographic protocol
to encrypt and decrypt plaintext and ciphertext,
respectively. The two major subsets of the field are
symmetric and asymmetric cryptography.

3.1. Symmetric Cryptography

A cryptosystem is said to be symmetric if the
encryption and decryption algorithms use the same key.
Under this category, there are two types of ciphers [13].
A block cipher is one in which a block of plaintext is
treated as a whole and used to produce a ciphertext block
of equal length. Typically, a block size of 64 or 128 bits
is used.

The researchers in [20] define a lightweight cipher
as a cryptographic algorithm specifically designed
for low-resource devices that has minimal overhead,
low-power consumption, and adequate security.

”Lightweight” implies small block size (32, 48, or
64 bit) compared to conventional ciphers (64 or 128 bit
blocks) [21]. The key size tends to be smaller in the case
of lightweight ciphers. Additionally, lightweight ciphers
may simplify the key range [22] and employ elementary
operations with a larger number of rounds [23].

A stream cipher is one that encrypts a digital data
stream one bit or one byte at a time. The bit-stream
generator must be implemented as an algorithmic
procedure, so the cryptographic bit stream can be
produced by both users. Classic examples of stream
ciphers include RC4, Pike, Rabbit, and Py. The
eSTREAM project of 2008 [24] produced several
lightweight stream ciphers: Grain v1, MICKEY v2, and
Tribium, which may be useful for IoT devices [13, 10].

Page 1629



3.2. Asymmetric Cryptography

Asymmetric Cryptography (or Public Key
Cryptography) rely on using one key for encryption
(public) and separate (private) key for decryption.
Common examples of asymmetric algorithms include
RSA, ECC, and Diffie-Hellman key exchange [5].

These cryptosystems provide unparalleled security
compared to its symmetric counterparts. The
major trade-off when using a Public Key System
is the computational resources required to perform
calculations [10]. The majority of IoT devices have
limited available processing power. Poor algorithm
performance may be infeasible for certain use cases
(such as a network consisting of medical sensors) [23].

In an ideal scheme, we would use the most secure
protocol available (such as RSA) in our cryptosystem.
However, we must consider the extraordinarily limited
processing power of IoT devices. The limiting factor
of encryption on IoT devices is their extraordinarily
limited processing power. Therefore, we must consider
the following fundamental concerns for developing
a cryptosystem for IoT devices: it is adequately
secure from most common attacks, it does not require
significant processing power to function properly, and it
can be easily implemented in existing systems.

4. Format Preserving Encryption

Format preserving Encryption (FPE) refers to any
encryption technique that takes a plaintext of a given
format and produces a ciphertext in the same format.
FPE allows the retrofitting of encryption technology to
legacy applications; this is useful for implementing into
a variety of IoT systems, such as those suggested in
[25, 26].

Table 2 demonstrates an encryption of an IoT
device’s ID number followed by a string of data (such as
temperature readings or heart rates). We see that using
AES converts the plaintext into indiscernible ciphertext,
while FPE produces ciphertext that can be easily used
for analysis, while still being able to identify the source
of the data.

Table 2. An example encryption of IoT data; the

device’s ID 1234 is preserved under encryption with

FPE.
Sample IoT Data

Plaintext 1234–1081–8254–9136–6918–7465
FPE 1234–3452–2341–7254–1029–8230
AES (base64) 0gV6F6/IvJrg2h/ePYo5xz0Pa

lXB1HC5B4aawkLhwck=

For FPE to be considered a viable encryption
technique, it must meet the following requirements:

1. The ciphertext is of the same length and format as
the plaintext.

2. It should be adaptable to work with a variety of
character and number types.

3. It should work with variable plaintext lengths.

4. Security strength should be comparable to that
achieved with AES.

5. Security should be strong even for small plaintext
lengths [27].

FPE algorithms implement Feistel structures, which
are used to construct the block cipher. The
structures are designed to convert any function (typically
referred to as a F -function) into a permutation [28].
Feistel structures consists of rounds of reversible
transformations consisting of three primary steps:
splitting the data into two strings, applying a keyed
function to one of the strings, and lastly reversing the
roles of the strings for the subsequent round [17].

5. The FF1 Algorithm

Originally proposed to NIST under the name FFX
[29], the FF1 algorithm is currently the only approved
FPE algorithm. It supports the greatest range of lengths
for the plaintext character string and the tweak. FF1
uses a pseudorandom function (PRF) that produces a
128-, 192-, or 256-bit output with inputted plaintext
X that is a multiple of 128 bits and encryption key
K [17]. PRF uses cipher block chaining with X as
the plaintext input, an encryption key K, and an initial
vector (IV ) of all zeros [27]. FF1 uses a round function
derived from AES-128 at its core with ten total rounds.
Table 1 compares FF1 against several asymmetric and
symmetric algorithms.

We define the base, or radix, as the number of
characters in a given alphabet. By this definition, the
radix of lowercase letters in the English alphabet is
equal to 26. Including more characters into the alphabet
(numbers, uppercase letters, symbols, etc.) will expand
the radix.

FF1 receives two inputs: a numeral string X of
length n and a tweak T of length t. A numeral
string is defined as a finite, ordered sequence of
numerals (numbers) for a given base. Essentially, we
would convert characters into their numerical equivalent
dictated by the base. As an example, the numerical

Page 1630



Table 1. Comparison of FF1 with classic encryption techniques [13].

Algorithm Key Size (bits) Block Size Structure No. Rounds
FF1 128/192/256 128 Feistel 10
AES 128/192/265 128 SPN 10/12/14
3DES 56/112/168 64 Feistel 48
RC4 40-2048 N/A Feistel 1
RSA 2048/3072 214/342 Prime Numbers 1

representation of lowercase letters in the English
alphabet is

a→ 0, b→ 1, . . . , y → 24, z → 25. (1)

Therefore, the character string algorithm would be
represented by the numeral string 0 11 6 14 17 8
19 7 12.

Our choice of radix is significant, since characters
outside the alphabet will be undefined, and thus
unable to be encrypted. Since we are simulating the
transmission of data recorded by IoT devices (that
would theoretically consist of pure numbers) and for
simplicity, our alphabet ALPH will be composed of base
ten numerals exclusively, such that

ALPH = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
radix = 10.

(2)

The FF1 encryption and decryption algorithms are
outlined in detail at the end of this paper in Algs. 1
and 2, respectively (adapted from [30]). The algorithms
are nearly identical aside from differences in Step 6
(indices are reversed, A and B are swapped, and
modular subtraction is used instead of modular addition
in Step 6.f).

An example encryption/decryption is shown in
Table 3 using a 128-bit AES key and ALPH consisting
of {0 . . . 9, a, . . . , z} (radix = 36):

Table 3. Example FF1 Encryption.
Plaintext (X) 0123456789abcdefghi
Key (K) 2B7E151628AED2A6

↪→ABF7158809CF4F3C
Tweak (T ) 3737373770717273373737
Ciphertext (Y ) a9tv40mll9kdu509eum

During the ten rounds of FF1, the plaintext is
broken into blocks, each of which is encrypted with
AES-128,-192, or -256. Naturally, this provides
improved security, but increased encryption time is
unavoidable and may be observed in our results. The
main “encryption” portion of the algorithm occurs

during Step 6. Knowing that AES is used in the PRF and
CIPH functions in Steps 6.b and 6.c, respectively, we can
approximate the time order O required to perform a full
FF1 encryption compared to a single AES encryption.
The number of encryptions which are processed in
Step 6.c are directly proportional to the plaintext length
and chosen radix.

Our results are presented in Table 4 for a plaintext
of length n ranging from 2 ≤ n ≤ 597 with radix =
10. The general interval is approximately 77 characters
before the number of AES encryptions increases (the
slight variance is caused by the algorithm’s floor/ceiling
functions). The PRF in Step 6.b is called for
every encryption, resulting in a minimum of 10 AES
encryptions to always occur. Further ranges can be
experimentally determined, or trivially extrapolated.

Examining the first range 2 ≤ n ≤ 56, we
are conducting 10 AES encryptions for a single FF1
encryption. Therefore, we expect for FF1 to at best be
approximately 10 times slower than a single AES-128
encryption. For 57 ≤ n ≤ 134, the CIPH function is
triggered, leading to an additional 10 encryptions per
round. This increases O to 20 for this interval, and will
add 10 for every subsequent range.

Furthermore, choosing a larger radix (such as all
numerals and lowercase letters, or radix = 36), will
cause O to increase and the ranges to shrink, leading to
nontrivial performance degradations.

Table 4. O for FF1 encryptions with radix = 10, up

to n = 597.
Range O (No. of AES Encryptions)

2 ≤ n ≤ 56 10
57 ≤ n ≤ 134 20
135 ≤ n ≤ 210 30
211 ≤ n ≤ 288 40
289 ≤ n ≤ 366 50
367 ≤ n ≤ 442 60
443 ≤ n ≤ 520 70
521 ≤ n ≤ 597 80

Page 1631



10 15 20 25 30 35 40 45 50
0.00

0.01

0.02

0.03

0.04

Plaintext length n

T
1
0
0

(m
s)

FF1-128
AES-256

3DES
RC4

Figure 1. Preliminary testing results for 10 ≤ n ≤ 50.

6. Tweaks and Identity-based FPE

Our motivation for implementing FPE on IoT
devices is as follows. The primary feature of FPE is the
ability to implement tweaks into the algorithm, which
allows further customization of how data is encrypted.
An example tweak would preserve the first and last
several digits of a plaintext which could be used for
device identification, as shown in Table 2. The tweak
need not be private information, which removes the need
of adequately securing it on the device.

Additionally, we introduce the concept of
Identity-based FPE, as proposed in [31, 32]. The
scheme is used to reduce the risk of attacks due to
key exposure. This is accomplished by associating the
identity of the device to a derived key, which allows
the device to encrypt a key K without needing to store
it on the device. This additional layer of complexity
drastically increases security in our cryptosystem by
eliminating the possibility of compromising other IoT
devices. Essentially, if a thermal sensor was attacked,
only that device would be impacted; other devices in
the IoT network would not be affected. The factory-set
serial number can be used as the identifier for the
encryption scheme.

We can sacrifice a reasonable amount of
performance by using FF1 in order to gain the
aforementioned features. The user has the freedom to
adjust the parameters according to their specific needs.
FPE reduces the amount of data transmitted (and thus
the energy requirement), since the ciphertext is not
limited to the cipher’s block size (such as with AES).

200 400 600 800 1,000
0

2

4

6

8

Plaintext length n

T
1
0
0

(m
s)

FF1-128
AES-256

3DES
RC4

RSA-2000
RSA-3000

Figure 2. Preliminary testing results for

10 ≤ n ≤ 1000.

7. Preliminary Testing

To determine if FPE is computationally feasible, we
compare it with several classic symmetric encryption
algorithms (AES-256, 3DES-168, and RC4-2048), as
well as an asymmetric algorithms (RSA with 2000- and
3000-bit keys). We use FF1 with 128-, 192-, and 256-bit
keys provided by NIST [17] (see Table 5). The programs
are designed to run an encryption-decryption of a
plaintext consisting purely of numbers, representative of
the data transmitted from an IoT device. For our FF1
code, we used an open-source FPE implementation [33].
The remaining symmetric algorithms were written using
OpenSSL. All programs were written in C.

Table 5. FF1 keys used in hex, as provided by NIST

in [17].

Size NIST Key
(bits)
128 2B7E151628AED2A6ABF7158809CF4F3C
192 2B7E151628AED2A6ABF7158809CF4F3C

↪→EF4359D8D580AA4F
256 2B7E151628AED2A6ABF7158809CF4F3C

↪→2B7E151628AED2A6ABF7158809CF4F3C

Our preliminary test consists of running our
encryption/decryption programs over a series of
plaintext lengths ranging from 10 to 1000 in intervals of
10, of which each is run 100 times and averaged. This
preliminary testing was performed on a Raspberry Pi 3
(CPU: Broadcom BCM2837 @ 1.2GHz; Memory: 1GB
LPDDR2-900 SDRAM) board. It uses the Linux-based

Page 1632



operating system Raspbain, which means our programs
will function on most IoT devices. The limited
processing power of the board provides an accurate
representation of how an IoT device performs when
tasked with encrypting arbitrary data.

For FF1, an arbitrary tweak T alongside one of the
NIST-recommended keys from Table 5 were used. An
arbitrary key-IV pair (K, IV ) for symmetric algorithms,
as well as a public/private key pair for asymmetric
algorithms. The data recorded were the plaintext length
n and the average computation time for 100 iterations
T100, measured in milliseconds. The programs encrypt
and decrypt the generated plaintext, and write the length
and average computation time (n, T100) to a file for
analysis.

The results of our preliminary testing are presented
in Figs. 1 (10 ≤ n ≤ 50) and 2 (10 ≤ n ≤ 1000). For
the first range, we notice that FF1 performs reasonably
well against the symmetric algorithms. Furthermore,
it is well below RSA, which is omitted from this
figure. However, our data demonstrates a quadratic
regression for n > 100 and suffers severe breakdown.
The symmetric algorithms are no longer discernible in
comparison to FF1 and RSA-2000/3000.

While the symmetric algorithms maintain linear
regression, FF1 begins to demonstrate quadratic
regression followed by the equation

T100 = 2 ∗ 10−6n2 + 0.0006n+ 0.012 (3)

with R2 = 0.9991.
For RSA-2000/3000, if we were attempt to encrypt

a plaintext of length n such that 210 < n < 400, the
encryption times would be doubled to approximately
1.52 ms for RSA-2000, and 3.17 ms for RSA-3000. This
follows from asymmetric algorithms having constant
encryption times up until their ”maximum” n. Beyond
the maximum, T100 would be doubled (until n passes
two times the maximum n, then T100 would triple, and
so on). We extrapolated the data accordingly for several
ranges to demonstrate the performance of RSA for larger
plaintext lengths in Fig. 2.

Fig. 3 directly compares FF1 with 128- 192-, and
256-bit keys. Aside from a few negligible time spikes,
we observe no significant change in performance among
the three. We will make use of this notion later.

The predictions we made in Sec. 5 were realized
in our results. The time order for the encryption
exceeded that predicted in Table 4. We conclude that
FF1 performs well compared against symmetric and
asymmetric schemes for plaintexts greater than n =
50. Beyond this point, FF1 struggles to compete with
all symmetric algorithms. In its current state is not
suitable for use on IoT devices using any protocol with

200 400 600 800 1,000
0

0.5

1

1.5

2

2.5

Plaintext length n

T
1
0
0

(m
s)

FF1-128
FF1-192
FF1-256

Figure 3. Plot comparing FF1 using 128-, 192-, and

256-bit keys.

relatively large maximum transmission units (MTUs).
Optimization of the FF1 C code is possible, but we
are still limited by the nature of FF1’s internal AES
calculations (as demonstrated in Sec. 5).

8. FF1+: Dynamic Round Selection

We determined in Sec. 7 that FF1 provides
comparable performance to traditional encryption
methods for relatively small plaintext sizes, but suffers
for n > 50. In order for FF1 to be considered a viable
encryption scheme among existing algorithms, it must
be modified. We propose FF1+, an evolution of the FF1
algorithm for primary use on IoT devices.

The main modification we propose is the reduction
of round numbers. NIST proposes the use of 10 internal
rounds (as shown in Step 6 of Alg. 1). In [29], the
suggested number of rounds for FFX (which evolved
into FF1) depends on the split(n), a function that takes
an allowed length n and returns a number such that
1 ≤ split(n) ≤ n/2. They require the number of
rounds r ≤ 8 for n = 2 · split(n) + 1 in order to
prevent known attacks. However, this recommendation
was made under the assumption that relatively small
plaintexts will be used.

In one of the examples presented in Appendix
B of [29], 12 rounds are specified as the minimum
for a plaintext ranging from 10 ≤ n ≤ 36 with
radix = 10. Furthermore, the NIST specification
of FF1 [17] concludes that ten rounds is sufficient
for all n. Expanding the range of allowable plaintext
lengths allows us to simultaneously reduce the number
of rounds.

Page 1633



Table 6. Wireless IoT protocols’ average data transfer dates from [30]; the third column contains the maximum

transmission unit (MTU) for each protocol in bytes, which dictates their class.

Class Protocol Data rate MTU (bytes) No. FF1+ Rounds Key Size (bits)

1

Ant 12.8 kbps 8

10 128

Weightless-P 200 bps 10
Weightless-W 1 kbps 10
Sigfox 1000 bps 12
BLE 8 kbps 20
Weightless-N 30 kbps 20

2 UHF RFID 40 kbps 50 8 128LoRaWAN 1.0 20 kbps 51
6LoWPAN 250 kbps 127

3 Zigbee 3.0 250 kbps 128 8 192
Z-Wave ZAD12837 40 kbps 128

4 Bluetooth 4.2 1 Mbps 251 6 192NFC ISO 100 kbps 254
Thread 250 kbps 1280

5 WiFi 802.11n 200 Mbps 1500 6 256
NB-IoT 250 kbps 1500

From our testing, we determined there to be no
added benefit requiring r = 10 for n > 100. Therefore,
concerning ourselves with large plaintexts allows us
reduce the number of total rounds for the encryption
and decryption functions accordingly. This will result
in improved performance without sacrificing security.

To illustrate this point, Table 7 contains a sample
encryption of a small plaintext and the changes to the
ciphertext when adjusting the number of rounds. Each
ciphertext does not have any discernible relationship to
the others. Furthermore, the differences between large
ciphertexts using different numbers of rounds are more
drastic. This approach of dynamic round selection will
allow us to improve performance and maintain security
across a variety of plaintext lengths.

Table 7. Ciphertext comparison between encrypting

a plaintext using 10, 8, and 6 rounds.
Plaintext 0123456789
Ciphertext (10) 2433477484
Ciphertext (8) 8392433335
Ciphertext (6) 4436484765

Table 6 contains the data rates and maximum
transmission units (MTU) for several IoT protocols,
which are divided into different classes according to
their respective MTUs. Each class corresponds to how
many rounds will be used for FF1+. Class 1 contains
protocols with small MTUs, so we maintain the original
recommended number of rounds and key size. All other
Classes vary the number of rounds according to their

respective MTUs.
As noted in Sec. 7, the key size for FF1 does not

impact performance. As such, we require a 128-bit
key for Classes 1 and 2, 192-bit for Classes 3 and
4, and 256-bit Class 5. This decision ensures we
maintain overall security while maximizing algorithm
performance.

Our results of testing FF1+ is presented in Table 8.
We compare FF1 and FF1+ for each Class under the
same conditions described in Sec. 7. The parameters
are unchanged for Class 1, resulting in the same
encryption times. For all subsequent classes, we observe
performance improvements up to 39%. We conclude
that dynamic round selection in FF1+ makes FPE a
viable option for the IoT.

Table 8. Our results comparing FF1 and FF1+

encryption times, and the respective performance

increase percentages.
Class FF1 (ms) FF1+ (ms) % Increase

1 0.01907 0.01907 0
2 0.04197 0.03257 22
3 0.13065 0.09525 27
4 0.29432 0.17753 39
5 4.04496 2.54526 37

Our comparison of FF1+ against classic encryption
techniques is presented in Fig. 4. The marked points
at n = {50, 250} for FF1+ indicate when the algorithm
switches the number of rounds, such that for n = 50, the
rounds are reduced from 10 to 8, and for n = 250, they

Page 1634



are reduced from 8 to 6. Similar to FF1, the plaintext
intervals of FF1+ obey quadratic regression. While
still not efficient as efficient as classical symmetric
algorithms for larger plaintext lengths, we do observe
a noticeable improvement with FF1+ over FF1, as
well as maintaining better performance than asymmetric
algorithms. We conclude that FF1+ will consistently
perform better than FF1 for n > 50, but will still not
be as efficient as classic symmetric algorithms for large
plaintexts.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

Plaintext length n

T
1
0
0

(m
s)

FF1-128
AES-256

3DES
RC4

FF1+

Figure 4. FF1+ testing for 10 ≤ n ≤ 500.

Asymmetric algorithms are neglected as they

maintain significantly slower performance.

9. Conclusion

We introduced the basics of FPE and its inherent
value to IoT security. We demonstrated that, in its
current form, FF1 suffers suffers in performance for
semi-large plaintext lengths for IoT devices. Formal
implementation and optimization of the algorithm may
improve performance, but FF1 will always limited by
its core encryption structure. Our modified algorithm
FF1+ successfully resolves this issue by implementing
dynamic round selection according to plaintext length.
Protocols are divided into classes according to their
MTU and are assigned a number of rounds and required
key size.

An additional modification we plan to implement
is swapping AES for HIGHT as the internal cipher
function. HIGHT is a lightweight block cipher
developed for low-resource devices [34] . It uses a
64-bit block length and 128-bit key length, and has been
shown in [35] to perform more efficiently and faster than
AES. The comparison between FF1 and our planned

modifications to FF1+ are shown in Table 9. This can
further improve overall algorithm performance, while
simultaneously reducing computational requirements.

Table 9. Future modifications to FF1+ compared to

FF1.
Algorithm FF1 FF1+
Block size (bits) 128 64
Number of rounds 10 6-10
Key size 128 128/192/256
CIPH function AES-128 HIGHT

To confirm that FF1+ maintains security, we
will conduct various forms of cryptanalysis (known
plaintext attacks, ciphertext-only attacks, differential
cryptanalysis, integral cryptanalysis, side-channel
attacks meet-in-the-middle attacks, and dictionary
attacks [36]) against our algorithm, as well as examine
the strong and weak avalanche effects [37]. Testing will
also be conducted on a field-programmable gate array
(FPGA) board. Limited research of FF1 on a FPGA
exists [38], and we will expand upon this by testing
FF1+ and compare it with other classic encryption
techniques.

Since FPE is designed to maintain the format of
the plaintext under encryption, we may be able to
resolve homomorphic properties from FF1. At the time
of writing, there is no existing research in this area.
This would provide yet another valuable feature for
IoT devices that currently exists only for asymmetric
algorithms such as RSA, ElGamal, and Pallier (all
partial homomorphic) [39]; this category of algorithms
all require significantly more processing power than
FF1.

Page 1635



Algorithm 1 FF1 Encryption
Prerequisites:

• A designated cipher function CIPH of an approved
block cipher (128-, 192-, or 256-bit),

• A Key K for the block cipher,
• The chosen base (alphabet), radix,
• The range of supported message lengths (n) from
2 ≤ n ≤ 232,

• The maximum byte length for tweaks maxT len.

Functions:

• PRF(X) - the output of a pseudorandom function
applied to block X .

• STRm
radix(x) - conversion of a nonnegative integer

x into a string of m numerals in base radix.
• NUM(X) - the integer that a bit string X .
• NUMradix(X) - the number that a numeral string
X represents in base radix.

Inputs:

• A numeral string X of length n, where X ∈
radix,

• The tweak T as a byte string of length t, where
0 ≤ t ≤ maxT len.

Output:

• A numeral string Y of length n.

Steps:
1: Let u ≡ bn2 c and v ≡ n− u.
2: Set the first and second halves of X to numeral

strings A and B, such that A = X[1..u], B =
X[u+ 1..n].

3: Let b = ddv log2(radix)e/8e.
4: Let d = 4db/4e+ 4
5: Let P = [1]1‖[2]1‖[1]1‖[radix]3‖[10]1‖[u

mod 256]1‖[n]4‖[t]4.
6: for i = 0 to 9

a: Let Q = T‖[0](−t−b−1) mod 16‖[i]1‖
[NUMradix(B)]b.
b: Let R = PRF(P‖Q).
c: Set S to the first d bytes of the string of dd/16e:
R‖CIPHK(R ⊕ [1]16)‖ . . . ‖CIPHK(R ⊕ [dd/16e −
1]16).
d: Let y = NUM(S)
e: if i is even, let m = u; else, let m = v.
f: Let c = (NUMradix(A) + y) mod (radixm).
g: Let C = STRm

radix(c)
h: Set A = B, then B = C.

7: Return Y = A‖B.

Algorithm 2 FF1 Decryption
Note: The Prerequisites, Functions, Inputs, and Output
are the same for the Decryption algorithm.
Steps:

1: Let u ≡ bn2 c and v ≡ n− u.
2: Set the first and second halves of X to numeral

strings A and B, such that A = X[1..u], B =
X[u+ 1..n].

3: Let b = ddv log2(radix)e/8e.
4: Let d = 4db/4e+ 4
5: Let P = [1]1‖[2]1‖[1]1‖[radix]3‖[10]1‖[u

mod 256]1‖[n]4‖[t]4.
6: for i = 9 to 0

a: Let Q = T‖[0](−t−b−1) mod 16‖[i]1‖
[NUMradix(A)]b.
b: Let R = PRF(P‖Q).
c: Set S to the first d bytes of the string of dd/16e:
R‖CIPHK(R ⊕ [1]16)‖ . . . ‖CIPHK(R ⊕ [dd/16e −
1]16).
d: Let y = NUM(S)
e: if i is even, let m = u; else, let m = v.
f: Let c = (NUMradix(B)− y) mod (radixm).
g: Let C = STRm

radix(c)
h: Set B = A, then A = C.

7: Return Y = A‖B.

References

[1] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan,
“Internet of things (iot) security: Current status,
challenges and prospective measures,” in Internet
Technology and Secured Transactions (ICITST), 2015
10th International Conference for, pp. 336–341, IEEE,
2015.

[2] statista, “Internet of things (iot) connected devices
installed base worldwide from 2015 to 2025 (in
billions),” may 2018.

[3] M. U. Farooq, M. Waseem, A. Khairi, and S. Mazhar,
“A critical analysis on the security concerns of internet
of things (iot),” International Journal of Computer
Applications, vol. 111, no. 7, 2015.

[4] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu,
“Security of the internet of things: perspectives
and challenges,” Wireless Networks, vol. 20, no. 8,
pp. 2481–2501, 2014.

[5] U. Kumar, T. Borgohain, and S. Sanyal, “Comparative
analysis of cryptography library in iot,” arXiv preprint
arXiv:1504.04306, 2015.

[6] T. Xu, J. B. Wendt, and M. Potkonjak, “Security
of iot systems: Design challenges and opportunities,”
in Proceedings of the 2014 IEEE/ACM International
Conference on Computer-Aided Design, pp. 417–423,
IEEE Press, 2014.

[7] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the
internet of things: a review,” in Computer Science and
Electronics Engineering (ICCSEE), 2012 international
conference on, vol. 3, pp. 648–651, IEEE, 2012.

Page 1636



[8] K. T. Nguyen, M. Laurent, and N. Oualha, “Survey
on secure communication protocols for the internet of
things,” Ad Hoc Networks, vol. 32, pp. 17–31, 2015.

[9] J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, and
Y. Jin, “Security analysis on consumer and industrial iot
devices,” in Design Automation Conference (ASP-DAC),
2016 21st Asia and South Pacific, pp. 519–524, IEEE,
2016.

[10] M. Katagi and S. Moriai, “Lightweight cryptography
for the internet of things,” Sony Corporation, pp. 7–10,
2008.

[11] N. Sklavos and I. D. Zaharakis, “Cryptography and
security in internet of things (iots): Models, schemes,
and implementations,” in New Technologies, Mobility
and Security (NTMS), 2016 8th IFIP International
Conference on, pp. 1–2, IEEE, 2016.

[12] A. K. Lenstra, “Unbelievable security matching aes
security using public key systems,” in International
Conference on the Theory and Application of Cryptology
and Information Security, pp. 67–86, Springer, 2001.

[13] B. J. Mohd, T. Hayajneh, and A. V. Vasilakos, “A survey
on lightweight block ciphers for low-resource devices:
Comparative study and open issues,” Journal of Network
and Computer Applications, vol. 58, pp. 73–93, 2015.

[14] G. Singh, “A study of encryption algorithms (rsa, des,
3des and aes) for information security,” International
Journal of Computer Applications, vol. 67, no. 19, 2013.

[15] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C.
Shantz, “Energy analysis of public-key cryptography
for wireless sensor networks,” in Pervasive Computing
and Communications, 2005. PerCom 2005. Third IEEE
International Conference on, pp. 324–328, IEEE, 2005.

[16] G. Gaubatz, J.-P. Kaps, and B. Sunar, “Public
key cryptography in sensor networks—revisited,” in
European Workshop on Security in Ad-Hoc and Sensor
Networks, pp. 2–18, Springer, 2004.

[17] M. Dworkin, “Recommendation for block cipher modes
of operation: methods for formatpreserving encryption,”
NIST Special Publication, vol. 800, p. 38G, 2016.

[18] S. Li, L. Da Xu, and S. Zhao, “The internet of things:
a survey,” Information Systems Frontiers, vol. 17, no. 2,
pp. 243–259, 2015.

[19] M. R. Abdmeziem, D. Tandjaoui, and I. Romdhani,
“Architecting the internet of things: state of the art,” in
Robots and Sensor Clouds, pp. 55–75, Springer, 2016.

[20] X. Fan, K. Mandal, and G. Gong, “Wg-8: A lightweight
stream cipher for resource-constrained smart devices,” in
International Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness,
pp. 617–632, Springer, 2013.

[21] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. Robshaw, Y. Seurin, and
C. Vikkelsoe, “Present: An ultra-lightweight block
cipher,” in International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 450–466,
Springer, 2007.

[22] M. Cazorla, K. Marquet, and M. Minier, “Survey
and benchmark of lightweight block ciphers for
wireless sensor networks,” in Security and Cryptography
(SECRYPT), 2013 International Conference on, pp. 1–6,
IEEE, 2013.

[23] N. Alassaf, B. Alkazemi, and A. Gutub, “Applicable
light-weight cryptography to secure medical data in iot
systems,” Arabia, 2003.

[24] S. Babbage, C. Canniere, A. Canteaut, C. Cid, H. Gilbert,
T. Johansson, M. Parker, B. Preneel, V. Rijmen,
and M. Robshaw, “The estream portfolio,” eSTREAM,
ECRYPT Stream Cipher Project, 2008.

[25] A. G. Logan, W. J. McIsaac, A. Tisler, M. J. Irvine,
A. Saunders, A. Dunai, C. A. Rizo, D. S. Feig,
M. Hamill, M. Trudel, et al., “Mobile phone–based
remote patient monitoring system for management of
hypertension in diabetic patients,” American journal of
hypertension, vol. 20, no. 9, pp. 942–948, 2007.

[26] H. Fernandez-Lopez, J. A. Afonso, J. H. Correia, and
R. Simoes, “Remote patient monitoring based on zigbee:
lessons from a real-world deployment,” Telemedicine
and e-Health, vol. 20, no. 1, pp. 47–54, 2014.

[27] S. William, Cryptography and network security:
principles and practices, vol. 232. Pearson Education,
2006.

[28] B. Schneier and J. Kelsey, “Unbalanced feistel networks
and block cipher design,” in International Workshop on
Fast Software Encryption, pp. 121–144, Springer, 1996.

[29] M. Bellare, P. Rogaway, and T. Spies, “The ffx mode
of operation for format-preserving encryption,” NIST
submission, vol. 20, 2010.

[30] R. Components, “11 internet of things (iot) protocols you
need to know about,” aug 2015.

[31] M. Bellare and V. T. Hoang, “Identity-based
format-preserving encryption,” CCS 2017, 2017.

[32] B. Latré, B. Braem, I. Moerman, C. Blondia, and
P. Demeester, “A survey on wireless body area
networks,” Wireless Networks, vol. 17, no. 1, pp. 1–18,
2011.

[33] 0NG, “Fpe - format preserving
encryption implementation in c.”
https://github.com/0NG/Format-Preserving-Encryption,
2018.

[34] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo,
C. Lee, D. Chang, J. Lee, K. Jeong, et al., “Hight: A
new block cipher suitable for low-resource device,” in
International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 46–59, Springer, 2006.

[35] B. J. Mohd, T. Hayajneh, Z. A. Khalaf, A. Yousef,
and K. Mustafa, “Modeling and optimization of
the lightweight hight block cipher design with
fpga implementation,” Security and Communication
Networks, vol. 9, no. 13, pp. 2200–2216, 2016.

[36] C. Swenson, Modern cryptanalysis: techniques for
advanced code breaking. John Wiley & Sons, 2008.

[37] S. Ramanujam and M. Karuppiah, “Designing an
algorithm with high avalanche effect,” IJCSNS
International Journal of Computer Science and Network
Security, vol. 11, no. 1, pp. 106–111, 2011.

[38] R. Agbeyibor, J. Butts, M. Grimaila, and R. Mills,
“Evaluation of format-preserving encryption algorithms
for critical infrastructure protection,” in International
Conference on Critical Infrastructure Protection,
pp. 245–261, Springer, 2014.

[39] L. Morris, “Analysis of partially and fully homomorphic
encryption,” Rochester Institute of Technology, pp. 1–5,
2013.

Page 1637


