
NEW DIRECTIONS IN SECURE MULTI-PARTY COMPUTATION:

TECHNIQUES AND INFORMATION DISCLOSURE ANALYSIS

by

Alessandro Nicolo Baccarini

August 2024

A dissertation submitted to the

Faculty of the Graduate School of

the University at Buffalo, The State University of New York

in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

Department of Computer Science and Engineering

Copyright by

Alessandro Nicolo Baccarini

2024

All Rights Reserved

ii

The dissertation of Alessandro Nicolo Baccarini was reviewed by the following:

Marina Blanton

Associate Professor of Computer Science and Engineering

Thesis Advisor, Chair of Committee

Shaofeng Zou

Assistant Professor of Electrical Engineering

Committee Member

Ziming Zhao

Assistant Professor of Computer Science and Engineering

Committee Member

iii

To my parents and fiancée Rebecca,
for their eternal love and support.

iv

Acknowledgments

This thesis is the culmination of a life-long journey filled with a broad range of emotions, expe-

riences, and challenges. There are several individuals who deserve recognition for their integral

roles in the successful completion of this dissertation.

First and foremost, I express my deepest gratitude to my advisor Dr. Marina Blanton. Her

guidance, wisdom, and encouragement fostered my growth from a novice PhD student into an

independent researcher. I wholeheartedly attribute my success to her mentorship philosophy,

which I can only hope to emulate one day. I truly appreciate her patience and support throughout

our many hours of discussion, as well as the privilege she provided to me to present our work

in Switzerland and Portugal. I hold the utmost admiration, appreciation, and respect for her as a

researcher, mentor, and colleague.

I thank my committee members for their time and guidance over the course of my PhD. I

extend my gratitude to Dr. Shaofeng Zou for his supervision and guidance in our collaborative

research projects contained within this dissertation. I thank Dr. Ziming Zhao for his thoughtful

comments during my dissertation defense and oral qualifying exam. I also acknowledge my past

and present fellow group members at UB, Dr. Chen Yuan and Dennis Murphy, for our collabora-

tions and discussions.

I extend my deepest gratitude to all my family members who have supported me outside grad-

uate school. I especially thank my parents for their love, support, and motivation throughout my

v

entire life: my mother Debra Baccarini and my late father Isidoro Baccarini. Their encouragement

throughout my adolescence into early adulthood ultimately led me to pursue a PhD, for which I

will be forever grateful. I thank my grandmother Norma Luongo for her love and our heartfelt

conversations, and my uncle Stanley Luongo for always finding a way to make me laugh. I also

thank my future in-laws Christopher and Lisa Vignogna, along with the entire Vignogna clan.

Finally, I thank my fiancée Rebecca Vignogna. She has been with me every step of the way,

and my rock throughout this journey. She has endured many years of long-distance during our

respective graduate educations, and I thank her for her love, patience, and motivation. She reas-

sured me when I was stressed, knew how to make me laugh when I was upset, and inspired me

to work hard every single day. I truly could not have done it without her, and I look forward to

living the rest of our lives together as “Dr. and Dr.”

Lastly, I thank our cat Matcha, whose company kept me sane through many hours of research,

writing, and editing. This dissertation is as much his as it is mine.

vi

Table of Contents

Acknowledgments v

List of Tables xii

List of Figures xv

List of Protocols xviii

Abstract xx

Chapter 1

Introduction 1

1.1 Challenge and Scope . 2

1.2 Dissertation Overview . 4

I A Replicated Secret Sharing Framework for an Arbitrary Number of Parties 7

Chapter 2

Related Work 8

2.1 Secret Sharing Schemes . 8

vii

2.2 Secure Floating-Point Arithmetic . 9

Chapter 3

Background 11

3.1 Secret Sharing . 12

3.2 Replicated Secret Sharing . 13

Chapter 4

Integer Protocols 15

4.1 Building Blocks . 15

4.1.1 Random Number Generation . 16

4.1.2 Multiplication . 16

4.1.3 Share reconstruction (Open) . 23

4.1.4 Inputting Private values . 25

4.2 Composite Protocols . 30

4.2.1 Binary-to-Arithmetic Conversion . 30

4.2.2 Shared Randomness Generation . 34

4.2.3 Comparisons and Equality Testing . 37

4.2.4 Bit-Decomposition . 41

4.2.5 Private Left Shift . 41

4.2.6 Truncation and Division . 42

4.2.6.1 Truncation . 42

4.2.6.2 Division . 45

4.3 Performance Evaluation . 53

Chapter 5

Floating-Point Protocols 62

5.1 Floating-Point Background . 62

viii

5.2 Rounding and Truncation . 64

5.3 Multiplication . 67

5.4 Division . 68

5.5 Addition and Subtraction . 69

5.6 Comparisons . 73

II Information Disclosure Analysis for Secure Function Evaluation 75

Chapter 6

Related Work 76

6.1 Quantitative Information Flow . 76

6.2 Function Information Disclosure . 77

6.3 Information Disclosure from Machine Learning Models 79

6.4 Differential Privacy . 80

Chapter 7

Background 82

7.1 Information Theory . 83

7.2 Formal Setting . 83

Chapter 8

Average Salary: Single Evaluation 88

8.1 Single Execution Analysis . 92

8.1.1 Discrete Distributions . 92

8.1.2 Continuous Distributions . 96

8.1.3 Discrete versus Continuous Distributions . 100

8.1.4 Comparison to Differential Privacy . 101

8.2 Min-Entropy Analysis . 105

ix

8.3 Mixed Distribution Parameters . 109

Chapter 9

Average Salary: Multiple Executions 118

9.1 Two Executions . 118

9.1.1 Bivariate Normal Distributions . 121

9.1.2 Experimental Evaluation . 124

9.1.3 Additional Two Executions Experiments . 131

9.1.4 Mixed Distribution Parameters for Two Executions 133

9.2 Three Executions and Beyond . 136

9.2.1 Three Executions . 136

9.2.2 M Executions . 138

9.2.3 Experimental Evaluation . 139

9.3 Recommendations . 142

Chapter 10

Advanced Statistical Functions 144

10.1 Candidate Functions . 144

10.2 Entropy Estimators . 146

10.3 Experiments . 148

10.3.1 Maximum . 149

10.3.2 Median . 149

10.3.3 Variance . 150

10.3.4 Relationship between fµ, fσ2 , and f(µ,σ2) . 152

Chapter 11

Conclusions 159

x

Appendix A

Additional Protocols 161

A.1 Sparse Multiplication . 161

A.2 edaBit Generation for RNTE . 164

Appendix B

Neural Network Applications 166

B.1 Related Works . 167

B.2 Quantized Neural Networks . 168

B.3 Experimental Results . 172

Bibliography 174

xi

List of Tables

4.1 Performance of basic RSS operations in the (n, t) setting with computation and

communication (measured in ring elements) per party. (†) The reported computa-

tion and communication for Inputp∗ is the total across all parties since the protocol

is asymmetric. 23

4.2 Performance comparison of existing B2A and RandBit protocols with our proposed

versions, with communication measured in the total number of bits sent across all

parties. Protocols with special requirements are indicated in parentheses. (∗) The

round and communication complexity of protocols based on [62] are computed

under the assumption an optimal multiply-and-open operation is used, such as

MulPub from [22]. 33

4.3 Performance of various building block protocols, with communication is measured

in the total number of bits sent across all parties. Protocols with special require-

ments are indicated in parentheses. 38

4.4 Composite protocol performance with communication measured in the total num-

ber of bits sent across all parties. For convenience, eB(k, ℓ) = edaBit(k, ℓ), rB =

RandBit(), and eBtr(k, m) = edaTrunc(k, m). θ= ⌈log(ℓ/3.5)⌉ from IntDiv (Proto-

col 15). 52

xii

4.5 Runtime of multiplication protocols in ms and communication is per party, per op-

eration in bytes (* means average for asymmetric communication patterns). FG and

FD refer to the optimized GRR and DN field multiplication from [35], respectively,

andR is our ring realization. 30 and 60 are integer bitlengths. 54

4.6 Runtime of matrix multiplication in ms. 55

4.7 Runtime of RandBit protocols in ms and communication is per party, per operation

in bytes. 56

4.8 Runtime of edaBit protocols in ms compared to MP-SPDZ implementation. Com-

munication for our solution is per party, per operation in bytes. 56

4.9 Runtime of MSB protocols in ms unless marked otherwise. Communication is per

party, per operation in bytes. rB and eB indicate variants using RandBit and edaBit,

respectively. 58

4.10 Runtime of B2A protocols in ms and communication is per party, per operation in

bytes. 61

5.1 Performance of floating-point-specific truncation and rounding protocols where

we require aℓ = 0. For convenience, eB(k, ℓ) = edaBit(k, ℓ), rB = RandBit(),

eBtr(k, m) = edaTrunc(k, m), and eBR(k, m) = edaTruncRNTE(k, m). 66

5.2 Performance of floating-point operations. For convenience, eB(k, ℓ) = edaBit(k, ℓ),

rB = RandBit(), eBtr(k, m) = edaTrunc(k, m), and eBR(k, m) = edaTruncRNTE(k, m).

. 74

9.1 Percentage of information loss after two executions relative to a single execution

for s = 10. 131

B.1 Performance of 3PC quantized MobileNets prediction in seconds. MP-SPDZ results

are over a ring Z2k . 172

xiii

B.2 Performance of 5PC quantized MobileNets prediction in seconds. MP-SPDZ results

are over a field Fp. 172

xiv

List of Figures

4.1 Sample three-party multiplication [a]·[b]. Arithmetic is inR. 21

4.2 Sample three-party Open([a]). Arithmetic is inR. 25

4.3 Sample five-party Inputp∗(a), where p∗ = 1. Arithmetic is inR. 28

4.4 Three-party micro-benchmarks results. 59

8.1 The twae(x⃗T) and awae(x⃗A) using inputs over U (0, 15) with a different number of

spectators |S|. 89

8.2 Analysis of target’s entropy loss using the Poisson distribution with Pois(λ), and

varying λ with |T| = 1. 93

8.3 Analysis of target’s entropy loss using the uniform distribution with U (0, N − 1),

and varying N with |T| = 1. 94

8.4 Analysis of target’s entropy loss using the normal distribution with N (0, σ2), and

varying σ2 with |T| = 1. 97

8.5 Analysis of target’s entropy loss using the log-normal distribution with logN (1.6702,

0.145542) and |T| = 1. 98

8.6 Comparing target’s absolute entropy loss for discrete H(X⃗T) − H(X⃗T | XT + XS)

and continuous h(X⃗T)− h(X⃗T | XT + XS) distributions. 102

8.7 Min-entropy analysis. 109

xv

8.8 Mixed distribution analysis under Case 1. The red dashed curves correspond to our

baseline where all groups are identically distributed (B,C,D ∼ N (0, σ2
B)), while

the remaining curves indicate the target belonging to distinct groups distributed

by B ∼ N (0, σ2
B), C ∼ N (0, 1.12σ2

B), and D ∼ N (0, 0.92σ2
B). The shaded regions

illustrate the full space for the absolute entropy loss, generated from every possible

spectator and group configuration. 115

8.9 Mixed distribution analysis under Case 2, where the probability of an arbitrary

participant belonging to any specific group is equally likely, i.e., Pr(IDP = B) =

Pr(IDP = C) = Pr(IDP = D) = 1/3. 117

9.1 Target information loss after participating in one or two computations. Omitted: if

the target participates in one experiment and all the shared spectators are reused,

then h(XT | O1, O′2) = 0. 125

9.2 Comparing the relative and absolute entropy losses of participants with normally

distributed inputs. The number of spectators per experiment on the x-axis is com-

puted as |S12 ∪ S1| = |S12 ∪ S2|, starting with |S1| = |S2| = 1. 132

9.3 Configurations and values of minimal information disclosure as functions of the

pairwise spectator overlaps for three evaluations. 140

9.4 The optimal shared spectators overlap configuration relative to the total number of

participants s for M evaluations. 141

10.1 Analysis of target’s entropy loss using the uniform distribution with U (0, 7), with

|T| = 1. N = a+b
2 corresponds the mean of a uniform random variable. 154

10.2 Analysis of target’s entropy loss using the Poisson distribution with Pois(4), and

with |T| = 1. 155

10.3 Analysis of target’s entropy loss using the Gaussian distribution with N (0, 4.0),

and with |T| = 1. 156

xvi

10.4 Analysis of target’s entropy loss using the log-normal distribution with logN (1.6702,

0.145542), and with |T| = 1. 157

10.5 Absolute entropy loss comparison for various distributions of fµ + fσ2 , and f(µ,σ2)

for |S| = 2 and |S| = 5. 158

xvii

List of Protocols

1 [c]← Mul([a], [b]) . 18

2 [a1], . . . , [am]← Input(a1, . . . , am) . 26

3 [a1], . . . , [am]← Inputp∗(a1, . . . , am) . 27

4 [x]← B2A([x]1) . 31

5 [b]← RandBit() . 35

6 ([r] , [b0]1 , . . . , [bℓ−1]1)← edaBit(k, ℓ) . 36

7 [aℓ−1]← MSB([a]) . 39

8 [b]← EQZ([a]), where b = (a ?
= 0) . 40

9 ([cLT], [cEQ])← LT&EQ([a], [b]) . 40

10 [a0]1, . . . , [aℓ−1]1 ← BitDec([a], ℓ) . 41

11 [2a]← Pow2([a], ℓ) . 42

12 ([r], [r̂], [bk−1])← edaTrunc(k, m) . 44

13 [a/2m]← Trunc([a], m), where MSB(a) = 0 . 45

14 [a/2m]← TruncS([a], [m], ℓ), where MSB(a) = 0 . 45

15 [y]← IntDiv([a], [b], λ) . 50

16 [w]← AppRcr([b], ℓ) . 50

17 ([c], [v])← Norm([b], ℓ) . 51

xviii

18 ([a/2m], [a/2(m−2)])← TruncRNTE([a], m, rand), where MSB(a) = 0 64

19 ([a/2m])round ← RNTE([a], m), where the output is correctly rounded 66

20 [c̃]← FLMul([ã] ,
[
b̃
]
) . 67

21 [c̃]← FLDiv([ã] ,
[
b̃
]
) . 69

22 [m]← MDiv([m1], [m2], λ) . 70

23 [c̃]← FLAdd([ã] ,
[
b̃
]
) . 72

24 [b]← FLLT([ã], [b̃]) . 73

25 [c]← MulSparse([a], [b̂]) . 163

26 ([r], [r̂], [ˆ̂r][bk−1])← edaTruncRNTE(k, m) . 165

xix

Abstract

Secure multi-party computation (SMC) refers to the act of multiple participants jointly computing

an arbitrary function on private inputs without disclosing any information beyond the output.

SMC has grown in mainstream popularity with a wide range of applications in machine learning,

healthcare, and, data analytics.

Among the available techniques, secret sharing offers competitive performance and is a pop-

ular choice in a variety of domains. While many schemes perform computation over a field, alter-

native techniques that operate over the ring Z2k (such as replicated secret sharing, or RSS) have

been proposed and shown to substantially boost performance. The caveat associated with existing

frameworks is that they are often bespoke three-party solutions, which do not easily generalize in

the event the computational setup needs to be adjusted to accommodate more participants or a

higher collusion threshold. Moreover, there is a gap in the literature for a ring-based framework

that supports both integer and floating-point computation. The first aspect of this dissertation fills

this gap by developing a comprehensive protocol suite in the semi-honest, honest majority setting

based on RSS. We construct a set of elementary building blocks, which enable us to build more

complex operations to ultimately support general-purpose computation. We demonstrate that our

techniques are substantially faster than their field-based equivalents when instantiated with a dif-

ferent number of parties, and perform on par with or better than state-of-the-art techniques with

constructions designed for a fixed number of parties.

xx

In light of these and many other recent advancements of SMC, the literature lacks a means of

measuring information disclosure from the output of secure function evaluations. In other words,

how much information is leaked about private input(s) by virtue of releasing the output? The

second aspect of this dissertation answers this question and more through our framework for

measuring information disclosure of practically significant data analysis functions. Motivated by

the City of Boston gender pay gap studies, we analyze the computation of the average salaries

and quantify information disclosure about private inputs of one or more participants (the target)

to an adversary via information-theoretic techniques (i.e., computing the entropy). We study a

number of different distributions and experimental configurations and provide recommendations

for real-world SMC deployments of the average salary computation. This approach is founda-

tional when we pivot to more advanced statistical measures (such as the variance, maximum, and

median), which introduce new challenges based on the absence of established closed-form expres-

sions for the entropy. Fortunately, data-driven techniques circumvent these limitations and enable

us to apply our analysis to this broader domain of functions, each of which displays unique and

surprising behaviors.

xxi

Chapter 1
Introduction

Secure multi-party computation (SMC) and other privacy-preserving computing techniques have

enabled many opportunities for practical deployment for data analysis on sensitive information.

SMC has breached the domain of purely academic interest in recent years and garnered main-

stream popularity. For example, healthcare institutions jointly contributing patient data for the

purpose of developing breakthroughs in research and treatment [71]. Data privacy laws (such as

HIPAA) impose strict guidelines for the dissemination of medical records and personally identifi-

able information which may hamper technological advancements. Secure computation techniques

enable scientific professionals to conduct research to develop novel advancements in treatment

and patient care while maintaining compliance with privacy regulations. More broadly, wider

adoption of privacy-preserving technologies, and secure computation in particular, can lead to

higher security standards and practices in broad aspects of our society. As such, the research

community is constantly evolving and adapting to the public’s privacy needs.

The field of secure computation has substantially matured in the last decade with advances in

1

overall performance, while concurrently developing tools to facilitate broader adaptation by gen-

eral audiences. At the core, secure computation technologies rely on fundamental building blocks,

which cultivates a vast range of applications in data analytics [158], medicine [72, 33, 124, 52], bio-

metrics [32, 38, 37] and machine learning [160, 50, 130, 136, 49, 104, 60, 161, 79]. Many mainstream

corporations such as Google and Apple have integrated secure computation techniques into their

products [110, 162, 95, 30] and the number of start-up companies offering related products is ex-

panding (see, e.g., [4, 1, 116, 2]). However, a number of fundamental questions still need to be

addressed by the research community in order to make secure computing practices commonplace.

Data analytics encompasses a broad domain of computational technologies, ranging from in-

tricate computations (such as modeling, data cleansing, and communication), to fundamental de-

scriptive statistics such as the mean (average), standard deviation, and order statistics (maximum,

minimum, median). This dissertation focuses on advancing secure computation techniques upon

which a diverse range of applications are built, as well as developing a deeper understanding of

nontrivial aspects of the field as a whole.

1.1 Challenge and Scope

Informally, SMC is the notion of multiple parties working together to compute an arbitrary func-

tion on secret inputs. No information is revealed other than the output of the function itself. Many

options are available within SMC to realize specific security and performance guarantees. Secret

sharing (SS) offers superior performance for arithmetic operations over other prevalent crypto-

graphic tools such as homomorphic encryption. In this dissertation, we consider the assumption

that all parties are semi-honest, meaning they will not deviate from a specified protocol but will at-

2

tempt to learn as much information as possible. Moreover, we assume there is an honest majority,

such that only a minority of the participants can be corrupted.

Traditional multi-party computation techniques are performed over a field Fp with prime p.

This makes frequent use of modulo reduction a necessity, increasing the cost of the computa-

tion. Alternative approaches have been developed to perform computation over rings such as

Z2k [39, 21, 58, 62] offer a highly attractive performance for their inherent compatibility with native

CPU instructions. Shamir SS [148] is a common and efficient choice in the literature for computa-

tion in the honest majority setting. Unfortunately, Shamir’s construction is incompatible with ring

computation due to the need for multiplicative inverses as part of polynomial interpolation. The

current landscape of techniques in the semi-honest, honest majority setting which can perform

computation over ring Z2k for some k are limited to a fixed number of parties, most commonly

to 3 (see, e.g., [21, 117, 130, 50, 49]). This implies that the techniques do not easily generalize to

a larger number of participants, should there be a need to adjust the computation setup, e.g., to

permit the use of a higher collusion threshold. Moreover, most multi-party frameworks are lim-

ited to integer computation and do not consider floating-point operations. Recent approaches that

attempt to bridge this gap [140, 34, 43, 44, 48, 46, 45, 105, 111, 101, 114, 120, 144, 139] are often lim-

ited to two- and three-party solutions. The earliest comprehensive floating-point framework [16]

with support for an arbitrary number of parties used Shamir SS. Constructing a general-purpose

computation framework based on replicated secret sharing (RSS) to support n ≥ 3 computational

parties constitutes the first aspect of this dissertation.

In light of these developments, an underlying question remains regarding whether a secure

function evaluation is “safe.” As stated, the cryptographic community established standard secu-

rity definitions by the requirement that no information about private inputs is disclosed through-

3

out a function’s evaluation. That is, given a function f evaluated on private inputs x1, x2, . . . com-

ing from different sources, security is achieved if a participant does not learn more information

than the function output and any information that can be deduced from the output and its private

input. However, there are no constraints on the types of functions that can be evaluated in this

framework. The information one participant can deduce from the output and their private input

about another participant’s private input is potentially large.

This problem is typically handled by assuming that the function being evaluated is agreed

upon by and acceptable to the data owners as not to reveal too much information about private

inputs. Our ability to evaluate functions in this aspect and determine what functions might be

acceptable is currently limited. This introduces a number of nontrivial questions inherent to secure

computation as a whole: how much information is leaked about private inputs from releasing the

output of the computation? How should we quantify such a measure, such that a prospective

participant can learn actionable information about the true risk associated with participating in

a computation? In the event a function does leak information, what measures can we take to

mitigate the disclosure to an acceptable level? Answering these questions for a specific class of

functions with practical significance (such as in data analytics computations) is worthy of study,

and constitutes the second aspect of this dissertation.

1.2 Dissertation Overview

Given the current landscape of SMC and opportunities to advance the state-of-the-art as outlined

above, we distill the fundamental goal of this dissertation into the following objective:

4

To develop a comprehensive suite of RSS protocols in the semi-honest, honest majority

setting over a ring for an arbitrary number of parties, and to design techniques for

evaluating information disclosure from secure function evaluation.

This dissertation fills two vacancies in SMC literature. First, our framework serves as a compet-

itive alternative to existing solutions designed for both secure integer and floating-point compu-

tation. We deepen our understanding of fundamental questions regarding information leakage

inherent to secure computation, specifically in the context of descriptive statistical functions. We

summarize the main results of the dissertation below.

Part I. Comprehensive n-party RSS framework over a ring. The first component of the disserta-

tion pertains to developing a complete set of efficient RSS protocols over a ring in the semi-honest,

honest majority setting for any number of parties. In Chapter 4, we design a comprehensive set of

fundamental RSS protocols over an arbitrary finite ring for multiplication, share reconstruction,

and entering private values into the computation. After establishing these building blocks, we

narrow our focus to the ring Z2k to build higher-level protocols such as random bit generation,

comparisons, and division. In this process, we develop a generalization to n parties of [34]’s opti-

mized B2A protocol, which frequently appears in constructions. Extensive benchmarking demon-

strates the clear advantage of RSS over field-based techniques, as well as presenting RSS as a

compelling alternative to existing state-of-the-art solutions.

In Chapter 5, we further build upon our integer operations to construct protocols for floating-

point operations. We utilize the seminal work of [16] in conjunction with the recent works of

[140, 44] to develop fundamental floating-point arithmetic operations including addition, multi-

plication, division, and comparisons. We discuss any required modifications necessary to main-

tain compliance with the IEEE 754 standard for floating-point arithmetic.

5

Part II. Information disclosure analysis for secure function evaluations. The second aspect of

this dissertation focuses on analyzing information disclosure from secure statistical function eval-

uations. In Chapter 7, we leverage the entropy-based definitions from [12] to formulate our metric

for quantifying information disclosure and subsequently apply these definitions to functions with

significant practical relevance. Chapters 8 and 9 contain a comprehensive case study of the aver-

age salary computation as used in the Boston gender pay gap study [113]. This analysis unveils

a number of interesting properties about the average computation itself, including the indepen-

dence of the adversary’s inputs on the disclosure, the non-impact the choice of input distribution

has on the leakage, and how increasing the number of participants lowers the overall disclosure.

After our extensive treatment of the average function, we broaden the scope of our analysis

in Chapter 10 to encompass more complex functions and study the impact of potential mitigation

techniques. Specifically, we analyze nontrivial statistical functions prevalent in data analysis, such

as the standard deviation, median, and max/minimum. These functions pose more of a challenge

to analyze analytically, due to their lack of closed-form expressions for the entropy. To overcome

this limitation, we turn to data-driven techniques to estimate the information disclosure. Our

findings reveal a broad range of interesting interactions between the functions, the distributions

used to model participant inputs, and the computational configuration itself.

We conclude the dissertation in Chapter 11 and discuss open research problems.

6

Part I

A Replicated Secret Sharing Framework

for an Arbitrary Number of Parties

7

Chapter 2
Related Work

2.1 Secret Sharing Schemes

Secret sharing [148, 31] is a popular choice for secure multi-party computation, and common op-

tions include Shamir SS [148], additive SS, and RSS [96] for three parties. Computation over rings,

and specifically Z2k , has recently gained attention in publications including [39, 21, 117, 58, 64,

62, 77, 10, 102, 60]. We can distinguish between three-party techniques based on RSS such as

[39, 21, 117, 64, 77, 10, 102]; multi-party techniques based on additive SS such as [58, 62], often for

the setting with no honest majority; and ad-hoc techniques for three or four parties that utilize one

or more types of rings with constructions for specific applications such as [100] and others.

The first category is the closest to this work and includes Sharemind [39], a well-developed

framework for three-party computation with a single corruption using custom protocols; Araki et

al. [21] who use three-party with a single corruption to support arithmetic or Boolean circuits; and

several compilers from passively secure to actively secure protocols [117, 64, 77, 10]. Dalskov et

al. [61] also studied four-party computation with a single corruption. We are not aware of existing

8

multi-party techniques for an honest majority over a ring that extends beyond three parties or

multi-party protocols based on RSS over a ring. While RSS provides the most utility for a small

number of parties, we still find it desirable to support more participants and build additional

techniques for this setting. For example, if our matrix multiplication protocol over a ring with

three parties is 100 times faster than field-based computation, it will remain faster even if the

work increases when the number of parties is larger than 3.

We rely on the results of Damgård et al. [62] for some of our protocols. While this work is

for the SPDZ2k framework [58] in the malicious setting with no honest majority, once we develop

elementary building blocks, the structure of higher-level protocols can remain similar. Composite

protocols such as comparison, conversion, and truncation require a large number of random bits.

We leverage the edaBit protocol from [79] to efficiently generate sets of binary and arithmetic

shared bits. Their technique improves upon the daBit technique [143]. Rabbit [121] builds on

daBits [143] and edaBits [79] and developed an efficient n-party comparison protocol by relying

on commutativity of addition over fields and rings. Their protocol offers significant improvement

over [79] in most adversarial settings over a field, but remains comparable with a passively secure

honest majority over a ring.

2.2 Secure Floating-Point Arithmetic

We are not aware of an RSS-based framework that features floating-point multi-party protocols

for ring computation. Nonetheless, the concept of fusing multi-party computation and floating

point arithmetic has a rich history, with its genesis of Aliasgari et al.’s [16] landmark work. The

authors were the first to design a complete suite of protocols for floating point arithmetic based

9

on [48]’s fixed-point protocols using Shamir secret sharing. This work also featured complex

functions including square root, logarithm, and exponentiation. The techniques proposed were

later implemented into the PICCO compiler [165]. MP-SPDZ [102, 9] is an aggregate framework

with support for several SMC techniques and security settings, including RSS in the semi-honest,

honest-majority setting. The software creates virtual machines for many protocol variants which

are responsible for compiling user programs into secure machine code. The software realizes the

floating-point specifications from [16]. While ring computation using RSS is supported by MP-

SPDZ, it is limited to three computational parties.

SecFloat [140] is the most recent work to feature a two-party semi-honest floating-point frame-

work over a ring with 2-out-of-2 additive secret sharing. The authors claim to offer the first fully

IEEE 754-compliant SMC library, satisfying the core requirements for precision, rounding, and

correctness. Their implementation was integrated into CrypTFlow’s software package [112, 8] on

top of SIRNN’s [141] building blocks. SecFloat can support representations outside the standard

such as Google’s BFloat16 or NVIDIA’s TensorFloat32, as realized in their later work [139]. Natu-

rally, SecFloat’s two-party construction accounts for a stronger setting (dishonest majority), but we

emphasize our this work supports an arbitrary number of parties in the honest majority setting.

We acknowledge other recent works in the area not directly related to this dissertation but fall

within the scope of multi-party techniques on floating-point inputs [34, 43, 44, 48, 46, 45, 105, 111,

101, 114, 16, 120, 144].

10

Chapter 3
Background

We consider a secure multi-party setting with n computational parties, out of which at most t

can be corrupt. We work in the setting with an honest majority, i.e., t < n/2 and semi-honest

participants and use simulation-based security, formulated as follows:

Definition 1

Let parties P1, . . ., Pn engage in a protocol Π that computes function f (in1, . . ., inn) = (out1, . . ., outn),

where ini and outi denote the input and output of party Pi, respectively. Denote VIEWΠ(Pi) as the

view of participant Pi during the execution of protocol Π. More precisely, Pi’s view is formed by its

input and internal random coin tosses ri, as well as messages m1, . . ., mk passed between the parties

during protocol execution: VIEWΠ(Pi) = (ini, ri, m1, . . . , mk). Let I = {Pi1 , Pi2 , . . ., Pit} denote a sub-

set of the participants for t < n, VIEWΠ(I) denote the combined view of participants in I during

the execution of protocol Π (i.e., the union of the views of the participants in I), and f I(in1, . . . , inn)

denote the projection of f (in1, . . . , inn) on the coordinates in I (i.e., f I(in1, . . . , inn) consists of the i1th,

. . ., itth element that f (in1, . . . , inn) outputs).

11

We say that protocol Π is t-private in the presence of semi-honest adversaries if for each

coalition of size at most t there exists a probabilistic polynomial time simulator SI such that

{SI(inI , f I(in1, . . . , inn)), f (in1, . . ., inn)} ⇔ {VIEWΠ(I), (out1, . . . , outn)}, where inI =
⋃

Pi∈I{ini} and

⇔ denotes computational or statistical indistinguishability.

As customary with SS techniques, the set of computational parties does not have to coincide

with (and can be formed independently of) the set of parties supplying inputs in the computation

(input providers) and the set of parties receiving the output of the computation (output recipients).

Then, if a computational party learns no output, the computation should reveal no information

to that party. Consequently, if we wish to design a functionality that takes secret-shared input

and produces shares of the output, any computational party should learn nothing from protocol

execution.

3.1 Secret Sharing

A secret sharing scheme allows one to produce shares of secret x such that access to a predefined

number of shares reveals no information about x. In the context of secure multi-party computa-

tion, each of the n participants receives one or more shares xi and in the case of (n, t) threshold

SS schemes, possession of shares stored at any t or fewer parties reveals no information about x,

while access to shares stored at t + 1 or more parties allows for reconstruction of x. Of particular

importance are linear SS schemes, which have the property that a linear combination of secret

shared values can be performed locally on the shares. Examples of linear secret sharing schemes

include additive secret sharing with x = ∑i xi (as used in Sharemind [39] with n = 3 and in

SPDZ [65] with any n), Shamir secret sharing which realizes (n, t) secret sharing with t < n/2 and

12

represents a share as evaluation of a polynomial on a distinct point, and replicated secret sharing,

which we discuss next.

3.2 Replicated Secret Sharing

Our techniques utilize replicated secret sharing (RSS) [96] which has an associated access structure

Γ. An access structure is defined by qualified sets Q ∈ Γ, which are the sets of participants who are

granted access, and the remaining sets of the participants are called unqualified sets. In the context

of this work, we only consider threshold structures in which any set of t or fewer participants is not

authorized to learn information about private values (i.e., they form unqualified sets), while any

t + 1 or more participants are capable of jointly reconstructing the secret (and thus form qualified

sets). RSS can be defined for any n ≥ 2 and any t < n. To secret-share private x using RSS, we

treat x as an element of a finite ringR and additively split it into shares xT such that x = ∑T∈T xT

(in R), where T consists of all maximal unqualified sets of Γ (i.e., all sets of t parties in our case).

Then each party p ∈ [1, n] stores shares xT for all T ∈ T subject to p ̸∈ T. In the general case of

(n, t)-threshold RSS, the total number of shares is (n
t) with (n−1

t) shares stored by each party, which

can become large as n and t grow. In what follows, we use the notation [x] to mean that (private)

x is secret shared among the parties using RSS.

Example 1

Considering the (4, 2) setting, T consists of 6 sets T = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

and thus there are 6 corresponding shares for every secret-shared x. Then party 1 stores shares

x{2,3}, x{2,4}, x{3,4}, party 2 stores x{1,3}, x{1,4}, x{3,4}, and so on.

The parties will need to perform computation on secret shared values. The first important

13

property of RSS is that it is linear. That is, given shares of private values, each party can locally

compute the corresponding shares of a linear combination of the values. For example, to add [a]

and [b], party p computes aT + bT (in R) for each T ∈ T that p stores. A number of other op-

erations, such as multiplications, reconstructing a value from its shares, etc., are interactive. We

consequently describe in Section 4.1 the way we realize these operations. An important optimiza-

tion that we rely upon is non-interactive evaluation of a pseudo-random function (PRF) using

RSS in the computational (as opposed to information-theoretic) setting as proposed in [59]; see

Section 4.1 for detail.

In what follows, we use the notation “←” to denote the output of randomized algorithms,

while the notation “=” refers to deterministic assignment.

14

Chapter 4
Integer Protocols

This chapter contains our comprehensive RSS framework for integers. We first establish several

fundamental building block protocols. These enable us to construct more complex operations,

which we experimentally evaluate against their Shamir SS equivalents, as well as the current state-

of-the-art.

4.1 Building Blocks

Recall that RSS is linear. In addition to adding secret-shared values, we use the ability to add/-

subtract known integers to a secret-shared value [a] and multiply a secret-shared value [a] by a

known integer. Addition [a] + b converts b to [b] without using randomness (e.g., we could set

one share to b and the remaining shares to 0 to maintain ∑T∈T bT = b). Multiplication [c] = [a]·b

sets cT = aT·b (inR) for every T ∈ T .

For convenience and without loss of generality, we let n = 2t + 1. When n > 2t + 1, 2t + 1

parties can carry out the computation on a reduced set of shares in such a way that there is no

need to involve the remaining parties in the computation.

15

4.1.1 Random Number Generation

A fundamental component of RSS is the parties’ ability to generate secret-shared random variables

non-interactively. Invocation of ([a1], [a2], . . .)← PRG([s]) is realized by independently executing

a PRG algorithm on each share of s without interaction among the computational parties. Because

the output of PRG([s]) is private, we expect it to produce a sequence of secret-shared values (repre-

sented as ring elements). Furthermore, in our construction, we only call the PRG to obtain random

(secret-shared) ring elements. This means that calling PRG(sT) to produce pseudo-random aT will

result in PRG([s]) generating [a], where a is pseudo-random as well because a = ∑T∈T aT (in R).

This is similar to evaluating a PRF on a secret-shared key in the RSS setting without interaction

in [59].

PRG(sT) can be realized internally using any suitable algorithm, as long as it is consistent

among the computational parties. For example, due to the speed of AES encryption on mod-

ern processors, one might implement PRG(sT) = PRF(sT, 0)||PRF(sT, 1)||. . ., where PRF : R×

{0, 1}κ → R is a PRF instantiated with AES.

Let G = PRG([s]). When the output of G is not consumed all at once, we use notation G.next

to retrieve the next (secret-shared) element from G. Similarly, if GT = PRG(sT), notation GT.next

refers to the next pseudo-random share output by GT.

4.1.2 Multiplication

Multiplication [c]← Mul([a], [b]) (or simply [a]·[b]) is realized using the fact that a = ∑T∈T aT and

b = ∑T∈T bT and thus [a]·[b] = ∑T1,T2∈T aT1 ·bT2 (inR). Note that for any (T1, T2) pair, there will be

a party holding shares T1 and T2, and thus performing this operation involves local multiplication

16

and addition over different choices of T1, T2. More formally, let mapping ρ : T ×T → [1, n] denote

a function that for each pair (T1, T2) ∈ T 2 dedicates a party p ∈ [1, n] responsible for computing

the product aT1 ·bT2 (clearly, p must possess shares T1 and T2). For performance reasons, we also

desire that ρ distributes the load across the parties as fairly as possible.

As a result of this (local) computation, the parties hold additive shares of the product a·b = c,

which needs to be converted to RSS for consecutive computation. This conversion was realized in

early publications [126, 27] by having each party create replicated secret shares of their result and

distribute each share to the parties entitled to know it (i.e., party p receives shares from each party

for each T ∈ T subject to p ̸∈ T). This results in each participant creating (n
t) shares and sending

(n−1
t) of them to each party. Consequently, each participant adds the values received for share T

and stores the sum as cT, for each T in its possession.

More recent work, e.g., [21] and others traded information-theoretic security (in the presence

of secure channels) for communication efficiency by having the parties generate shared (pseudo–)

random values. We pursue this direction as well. However, if this idea is applied naively, it results

in unnecessarily high overhead. In particular, if we instruct each party p to generate all shares

for its secret, some shares will be known to more than t participants and thus do not contribute

to secrecy. Instead, our solution eliminates shares that p does not possess and thus does not

contribute to secrecy. Thus, our construction utilizes key material consistent with the setup of

the RSS scheme. In particular, we use the same key setup as in pseudorandom secret sharing,

where kT is known by all p ̸∈ T. Then, when a party needs to generate a pseudo-random share

associated with its value for share T, the party will draw it from the PRG seeded with kT.

We, however, note that multiple participants may need to draw from the PRG seeded with

kT to produce shares of their values, and it is generally not safe to use the same secret to protect

17

Protocol 1: [c]← Mul([a], [b])

// define GT = PRG(kT)
// pre-distributed values are [k] and public maps ρ and χ

1 for p ∈ [1, n] in parallel do
2 let Sp = {T ∈ T | p ̸∈ T}
3 v(p)

χ(p) = ∑T1,T2∈T ,ρ(T1,T2)=p aT1 bT2

4 for T ∈ Sp do cT = 0
5 for p′ ∈ [1, n] in order do
6 for T ∈ Sp do
7 if (p′ ̸= p) ∧ (p′ ̸∈ T) ∧ (χ(p′) ̸= T) then
8 cT = cT + GT.next
9 else if (p′ = p) ∧ (χ(p) ̸= T) then

10 z = GT.next
11 cT = cT + z

12 v(p)
χ(p) = v(p)

χ(p) − z

13 send v(p)
χ(p) to each p′ ̸∈ χ(p) (other than itself)

14 for p′ ∈ [1, n] subject to (p ̸∈ χ(p′)) ∧ (p′ ̸= p) do
15 receive v(p′)

χ(p′) from p′, set cχ(p′) = cχ(p′) + v(p′)
χ(p′)

16 cχ(p) = cχ(p) + v(p)
χ(p)

17 return [c]

multiple values, which is also the case in our application. Instead, multiple elements might be

drawn from the PRG (seeded with kT) to protect different values, and consistent use of the PRG

with each seed can be set up by the participants ahead of time, such that this information is public

knowledge.

In addition to the mapping ρ, our multiplication protocol requires another mapping χ : [1, n]→

T , which specifies for each party p the share T (subject to p ̸∈ T) that p communicates (with all

other shares of p’s value being produced as pseudo-random elements). As before, we desire to

choose the values of χ(p) that evenly distribute the load and communication. The above intuition

leads us to the optimized n-party multiplication protocol given as Protocol 1.

After computing its private value v(p) according to ρ, each party p distributes it into (n−1
t) ad-

18

ditive shares (one of which is communicated while others are computed using PRGs). Afterward,

each party sets its cT as a sum of t + 1 shares (computed or received) of values v(p′) for each party

p′ entitled to shares cT. This matches the fact that each share aT of secret a is maintained by t + 1

parties. Correctness is achieved by ensuring that in Protocol 1 two different participants p and

p′ with access to shares T consistently associate the values that they draw from GT with shares

belonging to different parties by always processing the values in the increasing order of partici-

pants’ IDs. Preparation of the shares in Protocol 1 is done on lines 4 to 12, where a participant

either masks its share with a pseudo-random value because it is used by another party or forms

its own shares and the value to be transmitted.

In this protocol, each party on average sends t ring elements and draws (n−1
t) − 1 + (n −

1)(n−2
t) − t pseudo-random ring elements (which is (t + 1)((n−1

t) − 1) when n = 2t + 1).1 The

latter can be explained by using (n−1
t)− 1 pseudo-random shares for its value being re-shared and

(n−2
t) shares that it has in common with any other party except the t values that it receives with

a symmetric communication pattern. (Recall that each party maintains (n−1
t) shares of a secret

and has (n−2
t) shares in common with any other party). When the communication pattern is not

symmetric, the overall amount of work and communication remains unchanged, but it may be

distributed differently. Thus, we refer to the average work and communication in that case.

Compared to other results, the three-party version of our protocol matches communication of

recent multiplication from [21], which is available only for three parties. This also improves on

communication of standard multiplication using Shamir SS from [86] (information-theoretically

secure in the presence of secure channels) by a factor of 2 and improves on communication of

Sharemind’s three-party multiplication from [106] by a factor of 2. For multi-party multiplication,

1It is possible to distribute the load evenly among the parties by appropriately setting the χ function.

19

it can be desirable to use a different communication pattern when a designated party reconstructs

a protected value and communicates it to others (as in, e.g., [63]) which scales better as n grows.

However, our version has lower communication when n = 3, uses fewer rounds, and n is typically

small with RSS.

Example 2

With three parties, we could have party 1 (in possession of shares {2} and {3}) compute (and add)

products a{2}b{2}, a{2}b{3}, and a{3}b{2}, party 2 (in possession of shares {1} and {3}) compute

products a{3}b{3}, a{1}b{3}, and a{3}b{1}, and party 3 (in possession of shares {1} and {2}) compute

products a{1}b{1}, a{1}b{2}, and a{2}b{1}. This defines mapping ρ. Also let χ(1) = {2}, χ(2) = {3},

and χ(3) = {1}. This, for example, means that when party 1 divides its computed value v(1) into

shares v(1){2} and v(1){3}, the latter is computed using a PRG, while the former is being sent to party 3

(i.e., the other party entitled to have that share). An illustration of the multiplication protocol with

these mappings in the three-party setting is given in Figure 4.1.

We state the security of multiplication as follows:

Theorem 1

Multiplication [c] ← [a]·[b] is secure according to Definition 1 in the (n, t) setting with n = 2t + 1 in

the presence of secure communication channels and assuming PRG is a pseudo-random generator.

Proof. Let I denote the set of corrupt parties. We consider the maximal amount of corruption with

|I| = t. Since the computation proceeds on secret shares and the parties do not learn the result, no

information should be revealed to the computational parties as a result of protocol execution.

We build a simulator SI that interacts with the parties in I as follows: when a party p ∈ I

expects to receive a value from another party p′ ̸∈ I in step 15 of the computation according to

20

v{2}

u{3}

w{1}

input:
a{2}, a{3}, b{2}, b{3}

G2 = PRG(k{2}),G3 = PRG(k{3})
computation:
v = a{2}b{2} + a{2}b{3} + a{3}b{2}
v{3} = G3.next, v{2} = v − v{3}
output:
c{2} = v{2} + G2.next
c{3} = v{3} + u{3}

input:
a{1}, a{2}, b{1}, b{2}

G1 = PRG(k{1}),G2 = PRG(k{2})
computation:
w = a{1}b{1} + a{1}b{2} + a{2}b{1}
w{2} = G2.next, w{1} = w − w{2}
output:
c{1} = G1.next+ w{1}
c{2} = v{2} + w{2}

input:
a{1}, a{3}, b{1}, b{3}

G1 = PRG(k{1}),G3 = PRG(k{3})
computation:
u = a{3}b{3} + a{1}b{3} + a{3}b{1}
u{1} = G1.next, u{3} = u − u{1}
output:
c{1} = u{1} + w{1}
c{3} = u{3} + G3.next

1

3

2

mappings:

ρ : {1} , {1} → 3

{1} , {2} → 3

{1} , {3} → 2

{2} , {1} → 3

{2} , {2} → 1

{2} , {3} → 1

{3} , {1} → 2

{3} , {2} → 1

{3} , {3} → 2

χ : 1 → {2}

2 → {3}

3 → {1}

Figure 4.1: Sample three-party multiplication [a]·[b]. Arithmetic is inR.

function χ, SI chooses a random element ofR and sends it to p. SI preserves the consistency of the

view and ensures that when the same value is to be sent by p′ to multiple parties in I, all of them

receive the same random value. This is the only portion of the protocol where corrupt parties can

receive values (that the simulator produces), and the only portion of the protocol when a corrupt

party p may send a value to an honest party p′ is step 13, which SI receives on behalf of p′. All

other computation is performed locally, in which SI does not participate.

We next argue that the simulated view is computationally indistinguishable from the real view.

First, note that the corrupt parties in I collectively hold shares aT, bT and keys kT (and thus can

compute values GT.next) for each T ∈ T such that ∃p ∈ I and p ̸∈ T. This entitles the corrupt

parties to compute the corresponding shares cT, but the rest of the shares must remain unknown,

such that they are unable to compute c. Next, notice that when |I| = t, there is only one share

21

T∗ = I such that all parties p ∈ I have no access to kT∗ and cT∗ , while all parties p′ ̸∈ I store

those values. Then there are two cases to consider: (1) If one or more parties p ∈ I receive χ(p′)’s

share of vp′ from another party p′ ̸∈ I (it must be the case that χ(p′) ̸= T∗), the received share

has been masked by a fresh pseudo-random element from GT∗ , is, therefore, pseudo-random and

indistinguishable from random by any p ∈ I. (2) If no party p ∈ I receives a value from any given

p′ ̸∈ I, indistinguishability is trivially maintained.

The multiplication protocol we present shares conceptual similarities with (optimized) mul-

tiplication from [103]. In particular, both sample pseudorandom secret shares according to the

access structure and communicate a single (properly protected) element to a subset of other par-

ticipants. Our solution explicitly defines all maps and the computation associated with computing

each share of the output, while the latter appears to be under-specified in [103].

The computation associated with multiplication can be generalized to compute the dot-product

of two secret-shared vectors DotProd(⟨[a1], . . . , [aN]⟩, ⟨[b1], . . . , [bN]⟩), or evaluate any other multi-

variate polynomial of degree 2, using the same communication and the same number of crypto-

graphic operations as in multiplication. For this purpose, we only need to change the computa-

tion in step 3 of the multiplication protocol. For example, to compute the dot product, we modify

step 3 to compute v(p) = ∑T1,T2∈T ,ρ(T1,T2)=p ∑N
i=1 ai

T1
bi

T2
(in R), while the remainder of the protocol

is unchanged.

Table 4.1 contains the performance of multiplication and the other building blocks presented in

this section. Communication is measured as the number of ring elements sent by each party and

computation is the number of cryptographic operations (i.e., retrieval of the next pseudo-random

element using a PRG) per party.

22

Operation Rounds Communication Crypto Operations

PRG([s]).next 0 0 (n−1
t)

Mul([a], [b]) 1 t (t+1)
(
(n−1

t)− 1
)

Open([a]) 1 t 0

DotProd(⟨[a1], . . . , [aN]⟩, ⟨[b1], . . . , [bN]⟩) 1 t (t + 1)
(
(n−1

t)− 1
)

Inputp∗(a1, . . . , am)† 1 mt (t + 1)
(

2(n−1
t)− 1

)

Table 4.1: Performance of basic RSS operations in the (n, t) setting with computation and commu-
nication (measured in ring elements) per party. (†) The reported computation and communication
for Inputp∗ is the total across all parties since the protocol is asymmetric.

4.1.3 Share reconstruction (Open)

Reconstruction of a secret shared value a = Open([a]) amounts to communicating missing shares

to each party such that the value could be reconstructed locally from all shares. Recall that there

are (n
t) total shares and each party holds (n−1

t) of them. Thus, each party receives d = (n
t)− (n−1

t)

missing shares during this operation.

Our next observation is that when n is not small (such as when n = 7), the value of d will

exceed n and transmitting d messages to each party is not needed. Since the value is reconstructed

as the sum of all shares, it is sufficient to communicate sums of shares instead of the individual

shares themselves. Recall that [a] can be reconstructed by t + 1 parties. This means that it is

sufficient for a participant to receive one element (i.e., a sum of the necessary shares) from t other

parties.

As before, we would like to balance the load between the parties and ideally have each party

transmit the same amount of data. This means that we instruct each party to send information to

t other parties according to another agreed upon mapping ν : [1, n] → (T , [1, n])d. For each party

p, this mapping will specify which of p’s shares should be communicated to which other party.

23

The mapping ν will then define computation associated with this operation: each p computes

∑T,ν(p)=T,p′ aT (inR) for each p′ ̸= p present in the mapping and sends the result to p′.

Similar to other SS frameworks, simply opening the shares of a maintains the security of the

computation (in the sense that no information about private values is revealed beyond the opened

value a). This is because we maintain that at the end of each operation, secret-shared values are

represented using random shares. In particular, it is clear that the result of PRG([s]).next produces

random shares; shares are properly re-randomized during multiplication of [a] and [b], and shares

of [a] + [b] and [a]− [b] are random if the shares of [a] and [b] are random themselves.

Example 3

With n = 3, we could have ν(1) = ({3}, 3), ν(2) = ({1}, 1), and ν(3) = ({2}, 2), such that

ν(p) = ({p − 1}, p − 1) (where p − 1 = 3 for p = 1), This corresponds to the communication

pattern displayed in Figure 4.2.

For n = 5, we may set ν(1) = ({2, 5}, 5), ({4, 5}, 5), ({4, 5}, 4), ({2, 4}, 4), ν(2) =

({1, 3}, 1), ({1, 5}, 1), ({1, 5}, 5), ({3, 5}, 5), etc., which corresponds to

ν(p) =({p− 1, p− 4}, p− 1), ({p− 1, p− 2}, p− 1),

({p− 1, p− 2}, p− 2), ({p− 4, p− 2}, p− 2)

As before p− i for p ∈ [1, n] means p− i + 5 if p− i < 1. This means that party 1 will send the sum

of shares {2, 5} and {4, 5} to party 5 (instead of sending the individual shares) and the sum of shares

{2, 4} and {4, 5} to party 4.

When performing computation over the ring Z2k , if the bitlength of the secret ℓ is smaller than

the ring size k (i.e., ℓ < k), we must reduce each share modulo 2ℓ prior to parties transmitting their

24

1

3

2

input:
a{2}, a{3}
output:
a = a{1} + a{2} + a{3}

input:
a{1}, a{2}
output:
a = a{1} + a{2} + a{3}

input:
a{1}, a{3}
output:
a = a{1} + a{2} + a{3}

a{3}

a{2}

a{1}

v : 1 → ({3} , 3)

2 → ({1} , 1)

3 → ({2} , 2)

mappings:

Figure 4.2: Sample three-party Open([a]). Arithmetic is inR.

shares to guarantee no information is revealed beyond the specified ℓ bits.

4.1.4 Inputting Private values

There will be a need to enter private values into the computation, and we discuss the correspond-

ing protocols in this section. We start with a general case when a participant who is not a compu-

tational party supplies their input into the computation and consequently discuss an optimized

version when the input owner is one of the computational parties.

The input owner holds a private value a which will be represented as an element of ring R.

The input owner will need to generate replicated shares that correspond to a and send them to the

computational parties. This will be the easiest way to proceed when there is only one element to

share. However, when someone is sharing a vector of elements, we can save on communication by

using pseudo-random shares. All shares except one for any element can be pseudo-random and

computed locally by computational parties after obtaining a PRG seed. This means that among all

shares T ∈ T , one is marked as special and is denoted as T∗. The corresponding share is computed

25

Protocol 2: [a1], . . . , [am]← Input(a1, . . . , am)

// Denote IO as the ‘‘input owner’’
1 for T ∈ T \ {T∗} do
2 IO generates random kT and sends it to each p ∈ T

3 for i ∈ [1, m] do
4 for T ∈ T \ {T∗} do
5 each p ̸∈ T sets share ai,T = PRG(kT).next

6 IO computes ai,T∗ = ai −∑T∈T \{T∗} PRG(kT).next (inR) and sends it to p ̸∈ T∗

7 each p ̸∈ T∗ sets share ai,T∗ to the value received from IO

8 return [a1], . . . , [am]

by the input owner and is communicated to all parties with access to that share. The construction

for Input is given as Protocol 2.

If the input owner is one of the computational parties, we can capitalize on the fact that the

parties already have pre-distributed PRG seeds. We denote the input party as p∗, and give a

modified version of the construction for Inputp∗ in Protocol 3. Note that p∗ has access to a subset

of the PRG seeds corresponding to the shares it is entitled to have access to, but not to all seeds.

While we could generate new seeds for each T such that p∗ ∈ T and make it available to all p ̸∈ T

and p∗, these seeds will be accessible to more than t parties and do not contribute to security.

Therefore, we instead choose to set such shares to 0 and use only shares accessible to p∗. As a

result, T∗ will be such that p∗ ̸∈ T∗, the parties will set shares aT = PRG(kT).next for each T such

that p∗ ̸∈ T and T ̸= T∗, share T∗ will be computed as aT∗ = a−∑T s.t. p∗ ̸∈T ∧ T ̸=T∗ aT (inR) by p∗

and communicated to all p ̸∈ T∗, and all remaining shares aT are set to 0.

All variants use a single round. When a single input is shared by an external party, the input

owner simply generates all (n
t) shares and communicates them to the computational parties (each

share is stored by t + 1 participants). This cost (which becomes the sharing of a PRG seed) is

amortized among all inputs when sharing multiple inputs. The additional cost per input for the

26

Protocol 3: [a1], . . . , [am]← Inputp∗(a1, . . . , am)

// p∗ is a computational party
1 for p ∈ [1, n] in parallel do
2 for i ∈ [1, m] do
3 let Sp = {T ∈ T \ {T∗} | p ̸∈ T}
4 for T ∈ Sp do
5 if p∗ ̸∈ T then
6 ai,T = PRG(kT).next
7 else
8 ai,T = 0

9 if p = p∗ then
10 ai,T∗ = ai −∑T∈Sp

ai,T (inR)
11 send ai,T∗ to each p′ ̸∈ T∗

12 else if p ̸∈ T∗ then
13 receive ai,T∗ from p∗

14 return [a1], . . . , [am]

input owner becomes generation (n
t) − 1 pseudorandom ring elements and communicating the

last, computed share to t + 1 computational parties, i.e., the total communication is t + 1 ring

elements. Each computational party needs to generate (n−1
t) or (n−1

t) − 1 pseudo-random ring

elements. When the input is shared by a computational party, there is no setup cost. The input

owner needs to generate (n−1
t)− 1 pseudo-random elements (i.e., similar to the number of shares it

stores per shared value) and communicate the computed share to t other parties. Each other party

computes (n−2
t) (i.e., the number of shares it has in common with the data owner) or (n−2

t) − 1

pseudo-random ring elements. As will be relevant later, when a computational party is sharing a

ring element in the (3,1) setting, the input owner communicates a single ring element to another

party (and only one pseudo-random element is computed by the input owner and the remaining

computational party).

27

1

2 5

3 4

a{2,3}

a{2,3}

input:
a,GT = PRG(kT), ∀T ∈ S1

computation:
aT = GT.next, ∀T ∈ S1

a{2,3} = a − ∑T∈S1
aT

input:
GT = PRG(kT), ∀T ∈ S5

output:
a{2,3}

aT = 0, ∀T ∈ S5 : {1} ∈ T

aT = GT.next, ∀T ∈ S5 : {1} /∈ T

T
∗ = {2, 3}

S1 = {{2, 4} , {2, 5} , {3, 4} , {3, 5} , {4, 5}}

S2 = {{3, 4} , {3, 5} , {1, 3} , {4, 5} , {1, 4} , {1, 5}}

S3 = {{4, 5} , {1, 4} , {1, 5} , {2, 5} , {2, 4} , {1, 2}}

S4 = {{1, 2} , {1, 3} , {1, 5} , {2, 5} , {3, 5}}

S5 = {{1, 2} , {1, 3} , {1, 4} , {2, 4} , {3, 4}}

input:
GT = PRG(kT), ∀T ∈ S4

output:
a{2,3}

aT = 0, ∀T ∈ S4 : {1} ∈ T

aT = GT.next, ∀T ∈ S4 : {1} /∈ T

input:
GT = PRG(kT), ∀T ∈ S3

output:
aT = 0, ∀T ∈ S3 : {1} ∈ T

aT = GT.next, ∀T ∈ S3 : {1} /∈ T

input:
GT = PRG(kT), ∀T ∈ S2

output:
aT = 0, ∀T ∈ S2 : {1} ∈ T

aT = GT.next, ∀T ∈ S2 : {1} /∈ T

protocol sets:

Figure 4.3: Sample five-party Inputp∗(a), where p∗ = 1. Arithmetic is inR.

Example 4

Consider the setting for n = 5 and party 1 is invoking Input (p∗ = 1). If T∗ = {2, 3}, the shares

that party 1 is entitled to (a{2,4}, a{2,5}, a{3,4}, a{3,5}, and a{4,5}) are generated pseudorandomly using

their respective generators PRG(kT).next. Party 1 subsequently calculates a{2,3} deterministically

and sends the computed share to parties 4 and 5. All remaining shares that party 1 is not entitled to

are set to zero by the respective parties who have access, i.e., a{1,2} = a{1,3} = a{1,4} = a{1,5} = 0.

This example is illustrated in Figure 4.3.

Security can be shown as before:

Theorem 2

Input is secure according to Definition 1 in the (n, t) setting with n = 2t + 1 in the presence of secure

communication channels and assuming PRG is a pseudo-random generator.

28

Proof. It is straightforward to show the security of the full version of Input when the input owner is

different from the computational parties. That is, the input owner creates proper shares according

to the SS scheme using a PRG. Thus, as long as the security of the PRG holds, the real view is

computationally indistinguishable from a simulated view created without the use of any secrets.

However, when the input owner is one of the computational parties, only a reduced set of

shares is produced. Thus, we need to evaluate the combined view of each coalition of t corrupt

participants. There are two important cases to consider: (i) input owner p∗ is a part of the coalition

and (ii) it is not.

When p∗ is a corrupt participant, building a simulator is trivial: the simulator simply receives

shares from the input owner on behalf of honest participants and terminates. Because inputs ai are

available to the corrupt parties, no information needs to be protected and the real and simulated

views use identical values.

When there are t corrupt participants who are different from p∗, we simulate the view by

choosing a random value for ai,T∗ and sending it to each corrupt p ̸∈ T∗. What remains to show

is that the t corrupt parties do not possess enough shares to reconstruct the secret and, as a result,

cannot learn any information about it. In more detail, p∗ distributes its secrets using only shares

T such that T ∈ T \ {T∗}. However, because we use (n, t) threshold SS, there will be a share T

possessed by p∗ which is not available to any of the t corrupt parties I. Specifically, that share is

available to all participants except the corrupt minority I. This means that the corrupt parties will

not be able to reconstruct information about the private inputs and the real and simulated views

are indistinguishable as long as PRG’s security holds.

29

In what follows, references to Inputl(a) when working over the ring Z2l will feature the sub-

script l to indicate the size of the ring (in bits) in which values are shared.

4.2 Composite Protocols

Having established the necessary building blocks, we direct our attention to constructing compos-

ite protocols for more complex integer operations. While the previous operations can be instanti-

ated to work with any finite ring, the techniques we present henceforth work only in a ring Z2k

for some k. The primary motivation for supporting secure computation over rings is its ability

to utilize native CPU instructions for computation. We use the notation [x]l to denote that secret

sharing is over Z2l , and defer to [x] when there is no ambiguity of the ring size. Lastly, we denote

ℓ as the bitlength of the secret, where ℓ ≤ k.

We summarize the theoretical performance of the building blocks discussed in Section 4.1

when instantiated over the ring Z2k , in conjunction with foundational composite protocols for

shared randomness generation and ring conversion in Table 4.3. Communication is measured

in the total number of bits sent across all parties. For the sake of completeness, we include the

complexities of protocols from other works that are integral to our constructions.

4.2.1 Binary-to-Arithmetic Conversion

Binary-to-arithmetic B2A appears frequently in both integer and floating-point protocols as a

means of converting shares of a bit [x]1 shared in Z2 to [x]k over Z2k . The most generic approach

follows the procedure from [62], and specifies generating a random bit in Z2 to protect the input

prior to opening. This construction leveraged their RandBit protocol that temporarily switches to a

two-bit larger ring Z2k+2 to compute the inverse square root. This is undesirable when computing

30

Protocol 4: [x]← B2A([x]1)

// one share T̂ is marked as ‘‘special’’
1 for p = 1, . . . , t in parallel do
2 v(p) =

⊕
T∈Sp :

ξ(p)=Sp

xT (in Z2)

3 [v(p)]← Input
p
k (v

(p))

4 Parties locally set v(t+1)
T̂

= xT̂ and v(t+1)
T = 0 for T ∈ T \

{
T̂
}

5 s = t + 1
6 for i = 1, . . . , ⌈log(t + 1)⌉ do
7 for j = 1, . . . , ⌊s/2⌋ in parallel do
8 [u]← Mul(

[
v(2j−1)

]
,
[
v(2j)

]
) // MulSparse if

[
v(2j)

]
is sparse

9
[
v(j)
]
←
[
v(2j−1)

]
+
[
v(2j)

]
− 2 [u]

10 if s mod 2 = 0 then
11 s = s/2
12 else
13

[
v((s+1)/2)

]
=
[
v(s)
]

14 s = (s + 1)/2

15 [x] =
[
v(1)
]

16 return [x]

in Z232 or Z264 , since it forces us to size-up to the next larger datatype. Alternative approaches

forego the ring switching in favor of more rounds [20] or require oblivious transfer to maintain

the cost of the general solution [130]. The work of Blanton et al. [34] designed a novel three-party

B2A solution that circumvents the random bit generation entirely while simultaneously lowering

the overall communication. We propose an n-party generalization in Protocol 4, which we outline

below.

The first phase of the protocol utilizes a mapping to determine which t parties locally compute

XOR (in Z2) of a subset of their accessible shares. We refer to these participants as the “XORing”

parties. Formally, let the mapping ξ : [1, t] → T \
{

T̂
}

denote a function that maps a party p ∈ T̂

to a subset of shares Sp that p is responsible for computing the local XOR v(p) =
⊕

T∈Sp,ξ(p)=Sp
xT

31

(clearly, p must possess all T ∈ Sp). For performance reasons, we also desire that ξ distributes

the load across the parties as fairly as possible. The remaining share that the aforementioned t

XORing parties do not have access to (denoted by xT̂) can be reshared locally by the remaining

t + 1 participants by setting one share to v(t+1)
T̂

= xT̂ and the rest to zero. Secrets of this form

are referred to as “sparse” and parties with access to the nonzero share are referred to as “sparse

parties.”

Example 5

The mapping for n = 3 is simple since only one party p needs to compute the XOR of their local

shares, i.e., ξ(p) = {{p + 1} , {p + 2}} (mod n), such that T̂ = {p}.

A mapping for the n = 5 configuration may assign 5 shares to p1 and 4 shares to p2 as follows:

ξ(1) = {{2, 3} , {2, 4} , {2, 5} , {3, 4} , {3, 5}}

ξ(2) = {{1, 3} , {1, 4} , {1, 5} , {4, 5}}

and leaving T̂ = {1, 2}. For n = 7 parties, we may have the following mapping where 11 shares are

assigned to p1 and p2, and 12 shares to p3:

ξ(1) = {{2, 3, 4} , {2, 3, 5} , {2, 3, 6} , {2, 3, 7} , {2, 4, 6} , {2, 4, 7} ,

{2, 5, 6} , {2, 5, 7} , {2, 6, 7} , {4, 6, 7} , {3, 5, 7}}

ξ(2) = {{3, 4, 5} , {3, 4, 6} , {3, 4, 7} , {1, 3, 4} , {3, 5, 6} , {1, 3, 5} ,

{3, 6, 7} , {1, 3, 6} , {1, 3, 7} , {1, 5, 7} , {1, 6, 7}}

ξ(3) = {{4, 5, 6} , {4, 5, 7} , {1, 4, 5} , {2, 4, 5} , {1, 4, 6} , {1, 4, 7} ,

{1, 2, 4} , {5, 6, 7} , {1, 5, 6} , {1, 2, 5} , {1, 2, 6} , {1, 2, 7}}

which leaves T̂ = {1, 2, 3}.

32

Protocol (Reqs.) Rounds Communication

RandBit() [62]∗ (in Z2k+2) 1 n(k + 2)(n− 1)
B2A([x]1) 2 n(k + 2)(n− 1) + nt

B2A([x]1) log(t + 1) + 1 ntk
(
t2 − t + 1

)

Table 4.2: Performance comparison of existing B2A and RandBit protocols with our proposed ver-
sions, with communication measured in the total number of bits sent across all parties. Protocols
with special requirements are indicated in parentheses. (∗) The round and communication com-
plexity of protocols based on [62] are computed under the assumption an optimal multiply-and-
open operation is used, such as MulPub from [22].

The next stage involves computing the XOR of the inputted computed XOR value(s) and the

sparse secret as a tree over Z2k , where XOR of is realized by multiplication and local addition, i.e.,

[a]⊕ [b] = [a] + [b]− 2[a]·[b]. We can optimize the protocol further by observing that exactly one

product of the tree will involve the sparse secret [v(t+1)], of which the t parties without access to T̂

will produce zeros as their local products. These parties can therefore skip the resharing compo-

nent of multiplication and only receive shares from other participants. We denote this specialized

product as MulSparse([a], [b̂]) where shares of b̂ are sparse. This functionality reduces the total

communication from ntk to tk(t + 1), which matches the round and communication complexities

of the three-party variant reported in [34] of 2 rounds and 3k total bits communicated. The full

specification of MulSparse is presented in Protocol 25 in Appendix A.1, alongside its security proof.

We summarize the round and (total) communication performance in Table 4.2. While our pro-

tocol requires one extra round in the three-party setting compared to [130]’s single-round OT ap-

proach, ours has superior communication complexity (3k versus 6k total bits communicated) and

can support an arbitrary number of parties. Compared to [62], our technique has the advantage

of not needing to switch to a larger ring mid-computation.

We state the security of B2A as follows:

33

Theorem 3

B2A is secure according to Definition 1 in the (n, t) setting with n = 2t + 1 assuming Input, Mul,

MulSparse are secure.

Proof. The security of B2A directly follows from the security of the building blocks used.

A byproduct of our improved B2A construction is that we can use this to generate shared

random bits. We discuss this in more detail in Section 4.2.2.

4.2.2 Shared Randomness Generation

Random bit generation is a crucial component of a variety of protocols, including different types of

comparisons, bit decomposition, division, etc. Therefore, it is of paramount importance to support

this functionality for general-purpose computation. In this work, we examine two variants: (i)

generating shares of a single bit as full-size ring elements and (ii) generating shares of k-bit random

r as full-size ring elements together with generating shares of individual bits of r in Z2.

The first variant denoted RandBit generates a single random bit shared in Z2k . Previous ap-

proaches realizing this functionality originate from [47] for field-based SS and then modified

in [62] to be compatible with computation over Z2k . To achieve 50% probability of each outcome

of the output bit, the computation temporarily uses a larger ring Z2k+2 for most steps of the proto-

col, while the remaining computation uses ring Z2k . This caveat carries the consequence that we

are forced to use a slightly smaller ring size to maintain the advantage of using native datatypes,

e.g., if k = 32, the computation would temporarily be over Z234 and the smallest usable datatype

would be at least 64 bits long. As alluded to in Section 4.2.1, we can leverage our new version of

B2A as a new means for generating shares of a single random bit in Z2k without needing to increase

34

the ring size beyond k bits.

Protocol 5: [b]← RandBit()

// one share T̂ is marked as ‘‘special’’
1 for p = 1, . . . , t in parallel do
2 Party p samples v(p) ∈ Z2

3
[
v(p)

]
← Input

p∗

k

(
v(p)

)

4 for p = t + 1, . . . , n in parallel do Parties locally set v(t+1)
T̂

= GT̂.next

5 v(t+1)
T = 0 for T ∈ T \

{
T̂
}

6 s = t + 1
7 for i = 1, . . . , ⌈log t + 1⌉ do
8 for j = 1, . . . , ⌊s/2⌋ in parallel do
9 [u]← Mul(

[
v(2j−1)

]
,
[
v(2j)

]
) // MulSparse if

[
v(2j)

]
is sparse

10
[
v(j)
]
←
[
v(2j−1)

]
+
[
v(2j)

]
− 2 [u]

11 if s mod 2 = 0 then
12 s = s/2
13 else
14

[
v((s+1)/2)

]
=
[
v(s)
]

15 s = (s + 1)/2

16 [b] =
[
v(1)
]

17 return [b]

Our approach is presented in Protocol 5. A subset of t parties will leverage their predistributed

PRG keys to generate random bits in Z2 to create shares without requiring communication. The

remainder of the protocol follows B2A exactly for computing the XOR of the pseudorandom bits.

Assuming participants behave semi-honestly, the output of the protocol is guaranteed to be a

uniformly random bit in Z2k by the definition of XOR.

The second variant of random bit generation is based on the edaBit construction described in

[79] and is denoted as edaBit(k), where the parameter k specifies the number of generated random

bits as well as the bitlength of their representation as integer r. It produces secret-shared k-bit

integer r in tandem with shares of the individual bits of r in Z2. The construction is given as

35

Protocol 6.

Protocol 6: ([r] , [b0]1 , . . . , [bℓ−1]1)← edaBit(k, ℓ)

// steps colored in blue required if ℓ < k
1 for p = 1, . . . , t + 1 in parallel do
2 Party p samples r(p)

0 , . . . , r(p)
ℓ−1 ∈ Z2 and computes r(p) = ∑ℓ−1

j=0 r(p)
j 2j

3 Simultaneously execute [r(p)]← Inputk(r(p)) and [r(p)
i]1 ← Input1(r

(p)
i) for i = 1, . . . , ℓ

with p being the input owner

4 [r] = ∑t+1
p=1[r

(p)]

5 s = t + 1
6 δ(j) = 0 for j = 1, . . . , ⌈log(t + 1)⌉
7 for i = 1, . . . , ⌈log(t + 1)⌉ do
8 for j = 1, . . . , ⌊s/2⌋ in parallel do
9 if δ(2j−1) ̸= δ(2j) then ∆ = δ(j) + 1 // add values with the same bitlength

10 else ∆ = max
(

δ(2j−1), δ(2j)
)

// add values with the different bitlengths

11
〈[

r(j)
0

]
1
,...,
[
r(j)
ℓ−1+∆

]
1

〉
←BitAdd

(〈[
r(2j−1)

0

]
1
,...,
[
r(2j−1)
ℓ−1+δ(2j−1)

]
1

〉
,
〈[

r(2j)
0

]
1
,...,
[
r(2j)
ℓ−1+δ(2j)

]
1

〉)

12 δ(j) = ∆

13 if s mod 2 = 0 then s = s/2
14 else
15

〈[
r((s+1)/2)

0

]
1

, . . . ,
[
r((s+1)/2)
ℓ−1+δ((s+1)/2)

]
1

〉
=
〈[

r(s)0

]
1

, . . .
[
r(s)
ℓ−1+δ(s)

]
1

〉

16 δ(s) = δ((s+1)/2)

17 s = (s + 1)/2

18 [b0]1 , . . . ,
[
bℓ−1+⌊log(t+1)⌋

]
1
=
[
r(1)0

]
1

, . . . ,
[
r(1)
ℓ−1+⌊log(t+1)⌋

]
1

19 if ℓ < k then
20 [bℓ] , . . . ,

[
bℓ+⌊log(t+1)⌋−1

]
← B2A

(
[bℓ]1 , . . . ,

[
bℓ+⌊log(t+1)⌋−1

]
1

)

21 [r] = [r]− 2ℓ ∑
⌊log(t+1)⌋−1
j=0 [bj+ℓ]2j

22 return ([r] , [b0]1 , . . . , [bℓ−1]1)

The idea consists of t + 1 parties (without loss of generality, the first t + 1 parties for this role)

each locally generating k random bits and computing the representation of those bits as a k-bit

integer (line 2). The bits are inputted into the computation using SS over Z2, while the integers

are entered using shares in Z2k (line 3). Since we use Input to generate shares over different rings,

we specify the respective subscripts k and 1, which indicate that the shares need to be produced

36

in their respective rings (Z2k and Z2). If k = ℓ, the protocol produces an output of the sum of the

t + 1 random integers (without the carry bits) and its bit decomposition, which is computed using

bitwise addition BitAdd from [146] of the t + 1 integers represented as bits in a tree-like manner.

Certain operations (such as bit decomposition) need only a short ℓ-bit edaBit, where ℓ ≪ k,

rather than a full-sized edaBit of length k. Our realization of the edaBit functionality in Protocol 6

supports generating short edaBits, which leads to additional steps (colored in blue) of the algo-

rithm that must be performed. Specifically, the consequence of generating a shorter edaBit is that

each successive invocation of BitAdd incurs an additional carry bit if inputs of the same bitlength

are supplied, up to a total of ⌊log(t + 1)⌋ bits. These carry bits must be converted from Z2 to Z2k

using B2A and subsequently removed from [r] (lines 20 and 21). If ℓ and k are “close” in value, the

performance benefit of generating a shorter edaBit is diminished. Despite performing BitAdd on

shorter inputs, the additional cost sustained by the subsequent invocations of B2A outweighs the

performance savings, to the point where it is cheaper to simply generate a full-length edaBit.

4.2.3 Comparisons and Equality Testing

Less-than comparisons, a
?
< b, are traditionally computed using SS by determining the most sig-

nificant bit of the difference between a and b. Starting from [47], comparison protocols blind the

difference by adding a random integer bit decomposition of which is known, open the sum, trun-

cate all but one bit, and compensate for any carry caused by the addition. This logic was adapted

to the ring setting in [62] by using building blocks that work over Z2k . In the solution that we

present as Protocol 7, we incorporate the edaBit protocol from [79] for efficient random bit gener-

ation into the construction of [62] adopted to the semi-honest setting.

The presence of carry is determined using sub-protocol BitLT which performs a comparison of

37

Protocol Rounds Communication

Open([a]) 1 ntk

Openℓ([a]) 1 ntℓ

Mul([a], [b]) 1 ntk

MulSparse([a], [b̂]) 1 (t + 1)tk

Input
p∗
k (a) 1 tk

kOR(⟨[ai]1⟩ℓ−1
i=0) [146] log(ℓ) nt(ℓ− 1)

BitLT(⟨ai, [bi]1⟩ℓ−1
i=0) [62] log(ℓ) 2nt(ℓ− 1)

PreOp(⟨[ai]1⟩ℓ−1
i=0) [146] log(ℓ) nt(ℓ/2) log(ℓ)

BitAdd(⟨ai, [bi]1⟩ℓ−1
i=0) [146] log(ℓ) ntℓ log(ℓ)

BitAdd(⟨[ai]1, [bi]1⟩ℓ−1
i=0) [146] log(ℓ) + 1 ntℓ(log(ℓ) + 1)

B2A([x]1) log(t + 1) + 1 ntk
(
t2 − t + 1

)

RandBit() log(t + 1) + 1 ntk
(
t2 − t + 1

)

RandBit() (in Z2k+2) [62] 1 n(k + 2)(n− 1)

edaBit(k, k) log(t+1)(log(k)+1) + 1 nt2k(log(k)+1)
+2tk(t+1)

∑
log(t+1)−1
i=0 (log(ℓ+ i)+1)

nt ∑t−1
i=0 ((ℓ+ i)(log(ℓ+ i)+1))

edaBit(k, ℓ) (ℓ < k)
+ log(t + 1) + 2 +ntk log(t+1)(t2−t+1)

+t(t+1)(k+ℓ)

edaTrunc(k, m) log(t+1)(log(k)+2) + 2
nt2k(log(k)+1)

+(2t + 1)ntk(t2−t+1)
+3tk(t+1)

Table 4.3: Performance of various building block protocols, with communication is measured in
the total number of bits sent across all parties. Protocols with special requirements are indicated
in parentheses.

two bit-decomposed values, one of which is given in the clear, using binary computation over Z2.

Security of the algorithm follows from prior work and the fact that we use a composition of

secure building blocks. In particular, the only values revealed in the protocol (in steps 3 and 9) are

information-theoretically protected using freshly generated randomness.

To correctly implement the comparison of two k-bit integers over ring Z2k , one would need

to invoke the MSB protocol 3 times. However, correctness is also guaranteed if we compare two

38

Protocol 7: [aℓ−1]← MSB([a])

// a = ∑ℓ−1
i=0 ai2i ∈ Z2k

1 Generate ℓ random bits [r0]1, . . . , [rℓ−1]1 in Z2 and one random bit [b] over Z2k

2 Compute [r] = ∑ℓ−1
i=0 2i[ri]1 and [r′] = ∑ℓ−2

i=0 2i[ri]1
3 c← Openℓ([a] + [r])
4 c′ = c mod 2ℓ−1

5 [u]1 ← BitLT(c′, [r0]1, . . . , [rℓ−2]1)
6 [u]← B2A([u]1) // Can be skipped if ℓ = k
7 [a′] = c′ − [r′] + 2ℓ−1[u]
8 [d] = [a]− [a′]
9 e← Openℓ([d] + 2ℓ−1[b]) and let eℓ−1 be the most significant bit of e

10 [aℓ−1] = eℓ−1 + [b]− 2eℓ−1[b]
11 return [aℓ−1]

(k− 1)-bit integers over ring Z2k using a single call to MSB.

There are noteworthy differences in the design of protocols developed for a ring as opposed

to original protocols for a field. Certain operations such as prefix multiplication are not available

in a ring, and we resort to logarithmic round building blocks when protocols over a field achieve

constant round complexity. In the context of comparison, a typical tool for realizing them was

truncation (i.e., right shift), the cost of which was linear in the number of bits truncated, but the

modulus had to be increased by a statistical security analysis to support such operations. In a ring,

on the other hand, there is no significant increase in the ring size, but the communication cost is

linear in the bitlength of the ring and not in the bitlength of the truncated portion. This carries

different trade-offs, but the availability of faster arithmetic in a ring will still lead to significant

savings.

Similar to less-than comparisons, we can determine if a secret shared value is equal to zero

(i.e., a ?
= 0) by performing equality testing protocol EQZ based on [62], and is given in Protocol 8.

The algorithm invokes the k-ary protocol with the OR operator kOpL from [146] and has a slightly

lower round and communication cost than MSB.

39

Protocol 8: [b]← EQZ([a]), where b = (a ?
= 0)

1 Generate ℓ random bits [r0]1, . . . , [rℓ−1]1 in Z2

2 Compute [r] = ∑ℓ−1
i=0 2i[ri]1

3 c← Openℓ([a] + [r])
4 [vi]1 ← ci ⊕ [ri]1 for i = 0, . . . , ℓ− 1 (in Z2)
5 [b]1 ← 1− kOR([v0]1, . . . , [vℓ−1]1)
6 [b]← B2A([b]1)
7 return [b]

Protocol 9: ([cLT], [cEQ])← LT&EQ([a], [b])

// cLT = (a
?
< b) and cEQ = (a ?

= b)
1 Generate ℓ random bits [r0]1, . . . , [rℓ−1]1 in Z2 and one random bit [b] over Z2k

2 Compute [r] = ∑ℓ−1
i=1 2i[ri]1 and [r′] = ∑ℓ−2

i=1 2i[ri]1
3 c← Openℓ([a]− [b] + [r])
4 c′ = c mod 2ℓ−1

5 [vi]1 ← ci ⊕ [ri]1 for i = 0, . . . , ℓ− 1 (in Z2)
6 Parties execute [u]1 ← BitLT(c′, [r0]1, . . . , [rℓ−2]1) and [v]1 ← 1− kOR([v0]1, . . . , [vℓ−1]1)

simultaneously and in parallel
7 [u], [cEQ]← B2A([u]∗1 , [v]1) // (∗) Can be skipped if ℓ = k
8 [a′] = c′ − [r′] + 2ℓ−1[u]
9 [d] = [a]− [a′]

10 e← Openℓ([d] + 2ℓ−1[b]) and let eℓ−1 be the most significant bit of e
11 [cLT] = eℓ−1 + [b]− 2eℓ−1[b]
12 return ([cLT], [cEQ])

Furthermore, we can simultaneously determine if two secret shared values [a] and [b] are less

than or equal to one another by combining Protocols 7 and 8 into LT&EQ (given in Protocol 9).

Two bits are produced corresponding to cLT = (a
?
< b) and cEQ = (a ?

= b). The BitLT and kOR

operations can be performed in lock-step in Step 6, such that the cost incurred by computing LT

and EQ together is minimal. This construction is useful for certain floating-point operations, such

as addition and comparisons.

40

Protocol 10: [a0]1, . . . , [aℓ−1]1 ← BitDec([a], ℓ)

1 Generate ℓ random bits [r0]1, . . . , [rℓ−1]1 in Z2

2 Compute [r] = ∑ℓ−1
i=1 2i[ri]1

3 c← Openℓ([a]− [r])
4 [a0]1, . . . , [aℓ−1]1 ← BitAdd(c, [r0]1, . . . , [rℓ−1]1)
5 return [a0]1, . . . , [aℓ−1]1

4.2.4 Bit-Decomposition

It is frequently necessary to obtain shares of individual bits [a0]1, . . . , [aℓ−1]1 of a secret [a] such

that a = ∑ℓ−1
i=0 ai2i. This is achieved through bit decomposition BitDec([a], ℓ) in Protocol 10, and

is derived from [47] and [62]. The protocol returns individual bits [ai]1 shared over Z2, which is

convenient since it is often optimal to perform computation directly on bitwise shares. Optionally,

we can run B2A on the output in parallel to recover shares in Z2k . Correctness follows exactly

from the protocol specification.

4.2.5 Private Left Shift

Arithmetic left shift (multiplication by a power of two), or [x·2a] by a private number of bits a is of

both independent interest and a necessary component of floating-point addition. This operation is

realized by privately raising a into the power of 2 (i.e., computing [2a]) and multiplying the result

with the input x. We present this functionality in Protocol 11, and it is based on the construction

from [16]. For an ℓ-bit input a, we bit-decompose the lower m = log ℓ of a, since raising 2 into the

power of a longer than log ℓ-bit value is not representable. After converting the individual bits of

a from Z2 to Z2k , the final result is obtained by computing the product

[2a]←
m−1

∏
i=0

22i
[ai] + 1− [ai],

41

Protocol 11: [2a]← Pow2([a], ℓ)

1 m = ⌈log ℓ⌉
2 [a0]1, . . . , [am−1]1 ← BitDec([a], m)
3 [a0], . . . , [am−1]← B2A([a0]1, . . . , [am−1]1)
4 for i = 0, . . . , m− 1 do
5 [xi]k = 22i

[ai]k + 1− [ai]k

6 [x]← KOpMul ([x0], . . . , [xm−1])
7 return [x]

which is computed as a tree.2 The algorithm is sub-logarithmic in the bitlength ℓ.

4.2.6 Truncation and Division

Division can be approached from several directions, depending on whether the divisor is a power

of two or an integer, and is public or private.

4.2.6.1 Truncation

Division by a power of two is accomplished using truncation. Truncation is independently an

essential building block for computation over fixed-point values, simulating fixed-point computa-

tion using integer arithmetic, and floating-point operations. The protocol we present, Trunc([a], m),

is a deterministic (exact) solution that combines the approach from [60] with edaBits from [79] and

inherits the requirement from [79] that input a is 1 bit shorter than the ring size, i.e., MSB(a) = 0.

The truncation functionality, given as Protocol 13, uses related random values r and r̂ (with

known bit decompositions) where r = ∑k−1
i=0 2iri is a full-size random value and r̂ = ∑k−1

i=m 2iri is

the portion remaining after truncating m bits. These bits can be generated either through [79]’s

edaBit construction or with our RandomBit protocol. If edaBits are used (rand = eda), we invoke

2The protocol from [16] utilizes prefix multiplication in place of a k-ary operation since it can be performed in a
constant number of rounds over a field.

42

a modified version of the edaBit generation function. Protocol 12 produces the aforementioned

values simultaneously. Each [r] and [r̂] is computed as a sum of t + 1 integers, so we must com-

pensate for two types of carries: (i) addition of the m least significant bits in r will produce carry

bits into the next bits which are not accounted for in r̂ and (ii) while the carry bits past the k bits

are automatically removed in the ring when computing r, these bits remain in r̂ due to its shorter

length. Since we compute the bitwise representation of r using bitwise addition protocol BitAdd,

we can also extract the carry bit into any desired position that is already computed during the

addition. The logic of the truncation protocol necessitates the removal of the (k− 1)th bit. For this

reason, we capture carries into the mth and (k− 1)th positions and denote those bits from the ith

call to BitAdd as cri,m and cri,k−1, respectively (line 8). We subsequently convert the 2 log(t + 1)

carry bits and the most significant bit of r, denoted as bk−1, from shares over Z2 to Z2k using B2A.

Up until the end of step 10, the computed truncation a′ is probabilistic in nature with an error

of at most 1 biased towards the nearest integer to a/2m. However, the recent work of Li et al. [115]

determined that probabilistic truncation protocols can leak information about the secret input [a]

since the random protection used to protect [a] is also responsible for sampling the probabilistic 1-

bit rounding error of the truncated value. This causes the protocol to be not simulatable and thus

not t-private. To rectify this, we convert probabilistic truncation to deterministic by determining

if a carry occurred when computing [a] + [r] in the lower m bits and subsequently removing it

from the output. This is accomplished through a bitwise comparison of the m lower bits of c and

[r] (line 11). The final result of the protocol is an exact truncation that leaks no information, thus

preserving security according to Definition 1.

We can leverage our public truncation algorithm to construct a protocol where we can trun-

cate a secret [a] by a private number of bits [m]. We present this functionality in Protocol 14. The

43

Protocol 12: ([r], [r̂], [bk−1])← edaTrunc(k, m)

1 for p = 1, . . . , t + 1 in parallel do
2 party p samples r(p)

0 , . . . , r(p)
k−1 ∈ Z2 and computes r(p) = ∑k−1

j=0 r(p)
j 2j and

r̂(p) = ∑k−1
j=m r(p)

j 2j

3 simultaneously execute [r(p)]← Inputk(r(p)), [r̂(p)]← Inputk(r̂(p)), and

[r(p)
i]1 ← Input1(r

(p)
i) for i = 0, . . . , k− 1, with p being the input owner

4 [r] = ∑t+1
p=1[r

(p)], [r̂] = ∑t+1
p=1[r̂

(p)]

5 s = t + 1
6 for i = 1, . . . , ⌈log(t + 1)⌉ do
7 for j = 1, . . . , ⌊s/2⌋ in parallel do
8 δ = j + s·(i− 1)

9
〈[

r(j)
0

]
1

, . . . ,
[
r(j)

k−1

]
1

〉
, [crδ,m]1, [crδ,k−1]1

10 ← BitAdd
(〈[

r(2j−1)
0

]
1

, . . .,
[
r(2j−1)

k−1

]
1

〉
,
〈[

r(2j)
0

]
1

, . . ., [r(2j)
k−1]1

〉)

11 if s mod 2 = 0 then
12 s = s/2
13 else

14

〈[
r(

s+1
2)

0

]

1
, . . . ,

[
r(

s+1
2)

k−1

]

1

〉
=
〈[

r(s)0

]
1

, . . . ,
[
r(s)k−1

]
1

〉

15 s = (s + 1)/2

16 [b0]1 , . . . , [bk−1]1 =
[
r(1)0

]
1

, . . . ,
[
r(1)k−1

]
1

17 [bk−1], ([crδ,m] , [crδ,k−1])
t
δ=1 ← B2A([bk−1]1, ([crδ,m] , [crδ,k−1])

t
δ=1)

18 [r̂] = [r̂]− [bk−1] · 2k−m−1 + ∑t
δ=1
(
[crδ,m]− [crδ,k−1]2k−m−1)

19 return ([r], [r̂], [bk−1], [b0]1 , . . . , [bk−1]1)

algorithm obliviously determines if [m] exceeds the bitlength of the input by computing the com-

parison m < ℓ. If so, this implies that we are truncating by more bits than what are available and

the output would be zero. We next privately left shift [a] by ℓ− [m] bits via Pow2 (Protocol 11) to

generate 2ℓ−m. We subsequently truncate the product by ℓ bits to recover the desired output of

[a/2m] and multiply the result by the comparison bit to account for when m ≥ ℓ.

44

Protocol 13: [a/2m]← Trunc([a], m), where MSB(a) = 0

// rand is determined prior to starting computation
1 if rand = eda then
2 ([r], [r̂], [bk−1], [b0]1 , . . . , [bk−1]1)← edaTrunc(k, m)

3 else
4 Generate k random bits [b0]1, . . . , [bk−1]1 in Z2
5 [bk−1]← B2A([bk−1]1)

6 Compute [r] = ∑k−1
i=0 2i[bi]1 and [r̂] = ∑k−2

i=m 2i−m[bi]1

7 c← Openℓ([a] + [r])
8 c′ = (c/2m) mod 2ℓ−m−1

9 [b] =
(
c/2ℓ−1)+ [bk−1]− 2

(
c/2ℓ−1) [bk−1]

10 [a′] = c′ − [r̂] + [b] ·2ℓ−m−1

11 [u]1 ← BitLT (c0, . . . , cm−1, [b0]1 , . . . , [bm−1]1)
12 [u]← B2A([u]1)
13 [a′] = [a′]− [u]
14 return [a′]

Protocol 14: [a/2m]← TruncS([a], [m], ℓ), where MSB(a) = 0

1 [b]← LT ([m], ℓ)
2 [2ℓ−m]← Pow2 (ℓ− [m], ℓ)
3 [x]← [a]·[2ℓ−m]
4 [y]← Trunc([x], ℓ)
5 [x]← [b]·[y]
6 return [x]

4.2.6.2 Division

If the divisor is not a power of two, we must turn to a general-purpose division algorithm. While

many conventional algorithms exist to compute the quotient a/b (e.g., digit recurrence, Newton-

Raphson), we restrict our focus to Goldschmidt’s iterative method [90] for its inherent compatibil-

ity with secure computation compared to other methods.

We summarize the method as follows [123]. Let w0 be the initial approximation of the recipro-

cal 1/b, chosen such that it has a relative error ε0 < 1 (explained below). Letting a0 = a, b0 = b

45

and multiplying the numerator and denominator by w0 transforms the problem into the form

a
b
=

aw0

bw0
=

a1

b1
.

The primary objective of the algorithm is to determine wi values to multiply the numerator and

denominator of the above equation, such that the denominator converges to 1 and, consequently,

the numerator towards the desired quotient. This directly translates to iteratively computing the

following terms (for i ≥ 1):

ai = ai−1wi−1, bi = bi−1wi−1, wi = 2− bi−1.

Denoting ri = ∏i
j=0 wj, if we continue multiplying the numerator and denominator by successive

wi terms, we observe

a
b
=

aw0 · · ·wi−1

bw0 · · ·wi−1
=

ai

bi
=

aiwi

biwi
=

ai+1

bi+1
=

ari

bri
.

The initial approximation w0 carries a relative error of ε0 = 1 − bw0, and it can be shown (via

induction) that each bi = 1− ε2i−1
and wi = 1 + ε2i−1

. By requiring |ε0| < 1, we ensure that after i

iterations ai converges to a/b (with relative error ε2i

0), and ri to 1/b.

The choice of the initial approximation of 1/b directly impacts how quickly the algorithm con-

verges to the desired quotient. The conventional approach involves normalizing b to a value

c in the range [0.5, 1), and then computing the reciprocal 1/c via linear approximation w0 =

2.9142− 2c with relative error ε0 < 0.08578, which provides 3.5 exact bits (see [48] and [78, Chap-

ter 7] for choice of constants). Therefore, for ℓ-bit inputs the algorithm needs θ =
⌈

log ℓ
3.5

⌉
itera-

46

tions. Alternate approaches [97] use a table lookup operation to compute the initial approximation

of 1/b in place of the linear approximation described above. However, the cost associated with

array access at a private index outweighs the benefit of not needing to normalize the denominator

as part of calculating the linear approximation.

Our division algorithm is presented in Protocol 15. The logic follows closely to the fixed-point

protocol designed by [48]. We detail each component of the algorithm below and highlight the

necessary modifications to ensure compatibility with integer computation over rings.

Before executing the division algorithm, we compute the absolute values of the inputs a and

b (denoted as â and b̂, respectively) such that we operate only on positive values, as required by

our truncation protocol. The products on lines 4–6 are all computed in parallel. This conveniently

eliminates the need to take the absolute value of [b] (and subsequent re-application of the sign) in

Norm. Naturally, the sign must be re-applied to the computed quotient before returning the result

in step 23.

As part of determining the initial approximation 1/b, we first normalize the divisor b to the

range (0.5, 1). This is accomplished in Norm (Protocol 17) We circumvent this restriction by obliv-

iously lifting b by its number of bits of precision, effectively converting it to a fixed-point number.

Concretely, assume 2m−ℓ−1 ≤ b < 2m−ℓ, for some m ≤ ℓ. We notice by simple algebra that

2m−ℓ−1 ≤ b < 2m−ℓ =⇒ 1/2 ≤ b2ℓ−m < 1,

which is our desired quantity. Therefore, the c is the fixed-point representation of the normalized

divisor b2ℓ−m with a scale 2ℓ−m. We obtain this scale factor by bit-decomposing b and computing

the parallel prefix OR of the individual bits. Throughout the remainder of the algorithm, we

47

operate on fixed-point values with ℓ bits of precision. This equates to periodically lifting certain

values by ℓ bits.

After performing normalization, we proceed with determining the initial approximation w ≈

a/b in AppRcr (Protocol 16). This consists of computing the quantity d = ((2.9142)·2ℓ − 2c)·2ℓ−m

and truncating the result back down to ℓ bits.

At this point, we can at last proceed with computing the quotient y ≈ a/b. Each multiplication

carries a sequential truncation to guarantee interim values do not overflow beyond the ring Z2k .

After computing the initial terms y0 = aw and x0 = 2ℓ − bw, we truncate y to ℓ + λ bits. The

parameter λ controls how many additional bits of the approximated quotient y are maintained

throughout iteration. Temporarily extending the interim bitlength of y from 2ℓ to 2ℓ+ λ increases

the likelihood that the final result of the computation is closer to the true quotient. This concept is

not explicitly stated in the original algorithm from [48], but rather mentioned in the description.

We opt to include λ as an argument to IntDiv for completeness.

Then, we iteratively compute

yi = yi−1·2ℓ + yi−1xi−1,

xi = xi−1xi−1,

with accompanying ℓ-bit truncations for 1 ≤ i < (θ − 1), where θ =
⌈

log ℓ
3.5

⌉
. After the last

iteration, we let y = yθ = yθ−12ℓ + yθ−1xθ−1 and truncate by ℓ+ λ bits to obtain the preliminary

quotient.

In original specification [48], the algorithm terminates at this point (line 17). However, our

protocol includes an error correction and rounding procedure after this point that is required for

48

integer division. As stated, the original protocol was designed for fixed-point arithmetic, which

preserves any non-integral precision to the right of the decimal point. However, this leads to

undesirable behavior for strictly integer inputs, since it leads to correctness and rounding incon-

sistencies. For example, calculating a/b where b divides a (i.e., a mod b = 0) would result in

the computed quotient being shifted down by 1 from the true value. To rectify this, we perform

a series of rounding corrections on lines 18–23 by determining if the product y·b̂ is less than â,

and subsequently adjusting y based on the result. This not only ensures the correct outputs are

produced, but also consistency with standard integer division in C-like programming languages

where we effectively compute ⌊a/b⌋.

Contrary to prior operations (besides truncation), division carries additional requirements for

the ring size relative to the bitlengths of the inputs, such that the algorithm produces an accurate

result. Assuming a and b are ℓ-bit inputs, the computation generates up to (2ℓ + λ)-bit values

(encountered on line 12). Therefore, the ring size k required to accommodate division is k > 2ℓ+λ,

where the strict greater-than stems from truncation’s requirement that the ring is at least 1 bit

larger than the bitlength of the secret.

If we supply a public divisor b, the algorithm substantially simplifies. After taking the absolute

values of the inputs as before, the primary division component consists solely of multiplying

[a] and [2k+λ·b] and truncating the product accordingly by k + λ bits. We maintain the integer

computation-specific steps of the algorithm, i.e., performing the rounding error correction and

re-applying the sign to the output.

Correctness of the protocol follows directly from [48] in conjunction with our modifications

outlined above to accommodate for integer arithmetic. Security is guaranteed from the building

blocks used.

49

Protocol 15: [y]← IntDiv([a], [b], λ)

1 α = 2ℓ, θ =
⌈

log ℓ
3.5

⌉

2 [aℓ−1]← MSB([a])
3 [bℓ−1]← MSB([b])
4 [â]← (1− 2[aℓ−1]) · [a]
5 [b̂]← (1− 2[bℓ−1]) · [b]
6 [sign]← (1− 2[aℓ−1]) · (1− 2[bℓ−1])

7 [w]← AppRcr([b̂], ℓ)
8 [x]← α− [b̂]·[w]
9 [y]← [â]·[w]

10 [y]← Trunc([y], ℓ− λ)
11 for i = 1, . . . , θ − 1 do
12 [y]← [y]·(α + [x])
13 [x]← [x]·[x]
14 [y]← Trunc([y], ℓ)
15 [x]← Trunc([x], ℓ)
16 [y]← [y]·(α + [x])
17 [y]← Trunc([y], ℓ+ λ)
18 [δ]← [â]− [y] · [b̂]
19 [δℓ−1]← MSB([δ])
20 [y] = [y] + 1− 2 · [δℓ−1]
21 [δ]← [â]− [y] · [b̂]
22 [δℓ−1]← MSB([δ])
23 [y]← [sign]·([y]− [δℓ−1])
24 return [y]

Protocol 16: [w]← AppRcr([b], ℓ)

1 α = (2.9142)·2ℓ
2 ([c], [v])← Norm([b], ℓ)
3 [d] = α− 2[c]
4 [w]← [d]·[v]
5 [w]← Trunc([w], ℓ)
6 return [w]

We present a comprehensive summary of the performance of all the protocols defined in this

section in Table 4.4.

50

Protocol 17: ([c], [v])← Norm([b], ℓ)

1 [b0]1, . . . , [bℓ−1]1 ← BitDec([b], ℓ)
2 [yℓ−1]1, . . . , [y0]1 ← PreOR([bℓ−1]1, . . . , [b0]1)
3 for i = 0, . . . , ℓ− 2 do [zi]1 = [yi]1 − [yi+1]1
4 [zℓ−1]1 = [yℓ−1]1
5 [z0], . . . , [zℓ−1]← B2A([z0]1, . . . , [zℓ−1]1)

6 [v] = ∑ℓ−1
i=0 2ℓ−i−1[zi]

7 [c]← [b]·[v]
8 return ([c], [v])

51

Protocol Reqs. Rand. Precomputation Active

Rounds Communication

MSB([a])

(ℓ=k) rB (k+1)·rB log(k−1)+2 4nt(k−1)
eB eB(k, k)+rB

(ℓ<k) rB (k+1)·rB log((ℓ−1)(t+1))+3 nt
(
k(t2−t+1)

+4(ℓ−1))eB eB(k, ℓ)+rB

EQZ([a]) rB k·rB log (ℓ(t+1)) +2 nt
(
k(t2−t+1)
+2ℓ−1)eB eB(k, k)

LT&EQ([a])
(ℓ=k) rB (k+1)·rB log(k(t+1))+3 nt

(
2k(t2−t+1)
+5(k−1))eB eB(k, k)+rB

(ℓ<k) rB (ℓ+1)·rB log(ℓ(t+1))+3 nt
(
k(t2−t+1)

+5(ℓ−1))eB eB(k, ℓ)+rB

BitDec([a], ℓ) rB ℓ·rB log(ℓ)+1 ntℓ(log(ℓ)+1)
eB eB(k, ℓ)

Pow2([a], ℓ) rB log ℓ·rB 2 log log ℓ

+ log(t+1)+2

nt ((log ℓ)(log log ℓ+k)
+k(log ℓ)(t2−t+1)−k

)
eB eB(k, log ℓ)

Trunc([a], m) (aℓ=0) rB k·rB log (m(t+1)) +2 nt
(
k(t2−t+1)

+2(m−1)+ℓ)eB eBtr(k, m)

TruncS([a], [m], ℓ) (aℓ=0) rB (k+ℓ+ log ℓ+1)·rB log
(
ℓ(ℓ−1)(t+1)3)

2 log log ℓ+9

nt ((log ℓ) log log ℓ+k(log ℓ+1)
+k(log ℓ+2)(t2−t+1)+7ℓ+6eB eB(k, k)+eB(k, log ℓ)+rB+eBtr(k, ℓ)

Norm([b], ℓ) rB ℓ·rB
log
(
ℓ2(t+1)

)
+3 nt(k(t2−t+1)+k

+ℓ(log ℓ3/2+1))eB eB(k, ℓ)

AppRcr([b], ℓ) rB (k+ℓ)·rB
log
(
ℓ3(t+1)2)+6 nt(2k(t2−t+1)+2k

+ℓ(log ℓ3/2+5)−2)eB eB(k, ℓ)+eBtr(k, ℓ)

IntDiv([a], [b], λ)
rB (7k+2k(θ−1)+ℓ+4)·rB log

(
(ℓ2−λ2)ℓθ+2(t+1)θ+3)

+ log
(
(k−1)3)+21+3θ

nt(k(3+2θ)(t2−t+1)+ℓ log ℓ3/2

+2(θ−1)(4ℓ+λ−k−2)+13ℓ+λ−22)eB 4·eB(k, k)+eB(k, ℓ)+4·rB+eBtr(k, ℓ± λ)+(2θ−1)·eBtr(k, ℓ)

Table 4.4: Composite protocol performance with communication measured in the total number of bits sent across all parties. For
convenience, eB(k, ℓ) = edaBit(k, ℓ), rB = RandBit(), and eBtr(k, m) = edaTrunc(k, m). θ= ⌈log(ℓ/3.5)⌉ from IntDiv (Protocol 15).

52

4.3 Performance Evaluation

We implemented the protocols described in this work and evaluate their performance in this sec-

tion. We run micro-benchmarks to evaluate the individual operations. Supplementary bench-

marks for neural network applications can be found in Appendix B and feature a novel optimiza-

tion trick specific to quantized neural networks.

The implementation was done in C++ and is available at [7]. We use AES from the OpenSSL

cryptographic library [3] to instantiate the PRF and also to implement secure communication chan-

nels between each pair of computational parties. We report the average execution time of 1000

executions for the micro-benchmark experiments. The runtimes are also averaged across the com-

putation parties. All experiments use identical 2.4 GHz virtual machines with 26 GB of RAM. They

were connected via 10 Gbps Ethernet links, which we throttled to 1 Gbps using the tc command.

Two-way latency was measured to be 0.106 ms. All experiments are single-threaded.

We report the performance of individual operations such as multiplication, matrix multiplica-

tion, random bit generation (RandBit3 and edaBit), comparisons (MSB), and binary-to-arithmetic

conversion (B2A). Unless otherwise noted, the experiments used two bitlengths, k = 30 and

k = 60, which allows us to use the uint32 t and uint64 t integer types, respectively, to imple-

ment ring operations. Tables 4.5 and 4.6 report the performance of multiplication and matrix

multiplication, respectively. As we strive to measure performance improvement when we switch

computation from a field to a ring, we compare the performance of our protocols to those us-

ing Shamir SS in the same setting (i.e., semi-honest security with honest majority) using PICCO

implementation [165] with recent improvements to multiplication from [35]. The field size is set

3The RandBit results presented in this section use the protocol presented in [22], which is based on the construction
from [62].

53

Protocol
Batch Size

Comm.
1 10 102 103 104 105 106

3PC

FG (30 bits) 0.081 0.0893 0.245 1.47 12.1 120 1,236 4
(60 bits) 0.082 0.0912 0.255 1.61 12.9 127 1,289 8

R (30 bits) 0.075 0.079 0.097 0.153 0.606 5.87 59.6 4
(60 bits) 0.075 0.076 0.108 0.320 1.096 9.68 113 8

5PC

FG (30 bits) 0.124 0.158 0.384 2.37 16.8 159 1,550 8
(60 bits) 0.129 0.167 0.439 2.45 17.9 173 1,669 16

FD (30 bits) 0.224 0.267 0.836 3.74 34.1 235 2,227 6.4∗

(60 bits) 0.229 0.278 0.924 4.01 36.4 254 2,436 12.8∗

R (30 bits) 0.139 0.141 0.160 0.52 3.96 38.2 377 8
(60 bits) 0.153 0.155 0.211 0.723 5.40 59.5 579 16

7PC

FG (30 bits) 0.168 0.198 0.497 3.17 24.5 238 2,353 12
(60 bits) 0.174 0.224 0.541 3.47 27.7 257 2,520 24

FD (30 bits) 0.275 0.327 1.18 7.69 60.4 502 4,829 6.9∗

(60 bits) 0.281 0.354 1.34 8.01 67.8 534 5,186 13.7∗

R (30 bits) 0.246 0.294 0.469 2.71 23.8 266 2,536 12
(60 bits) 0.269 0.268 0.555 3.39 33.2 365 3,490 24

Table 4.5: Runtime of multiplication protocols in ms and communication is per party, per opera-
tion in bytes (* means average for asymmetric communication patterns). FG and FD refer to the
optimized GRR and DN field multiplication from [35], respectively, and R is our ring realization.
30 and 60 are integer bitlengths.

to accommodate 30- and 60-bit integers. The “batch size” denotes how many operations were

executed at the same time in a single batch.

We measure runtime and communication with a number of parties ranging from 3 to 7. For

field multiplication, we measure the performance of two variants: GRR-based with higher asymp-

totic communication and 1 round (FG) and DN-based with lower asymptotic communication and

2 rounds (FD) as described in [35]. The former is strictly better in the three-party setting. The lat-

ter, despite its lower communication, does not lead to better performance as the number of parties

increases as it internally relies on RSS. However, the difference in performance of the two variants

is not substantial enough to play a major role in larger computations, as is demonstrated in Ta-

ble 4.6. We therefore proceed with FG with 3 parties and FD with 5–7 parties in other experiments

54

Protocol
Matrix Dimensions

10× 10 100× 100 500× 500 1000× 1000

3PC

F (30 bits) 0.318 91.6 1,025 8,289
F (60 bits) 0.319 94.2 1,187 8,723

R (30 bits) 0.187 2.83 212 1,567
R (60 bits) 0.288 3.82 226 1,638

5PC

FG (30 bits) 0.457 95.2 1,145 8,927
FG (60 bits) 0.462 97.9 1,321 10,134

FD (30 bits) 1.07 97.4 1,273 9,995
FD (60 bits) 1.09 102 1,493 11,964

R (30 bits) 0.219 11.5 720 5,224
R (60 bits) 0.202 12.5 813 5,939

7PC

FG (30 bits) 0.891 97.7 1,272 9,953
FG (60 bits) 0.904 101 1,478 10,864

FD (30 bits) 1.29 99.8 1,483 11,569
FD (60 bits) 1.35 104 1,536 13,742

R (30 bits) 0.514 48.0 5,880 48,793
R (60 bits) 0.591 59.0 7,509 71,234

Table 4.6: Runtime of matrix multiplication in ms.

where multiplication is used.

From Table 4.5 we observe that our RSS performance is up to 20 times faster with a sufficiently

large batch size in the 3-party setting compared to the field and some performance advantage is

maintained even with 7 parties despite the need to compute with a much larger number of shares.

Note that the performance gain is due to faster instructions because communication is comparable

across different variants. This indicates that using native CPU instructions for secure arithmetic

has a remarkable advantage.

Matrix multiplication in Table 4.6 is performed in a single round using the necessary number

of dot-products. Because local work is the bottleneck, we see performance improvement by up to

a factor of 32.3 after switching to a ring with 3 parties. Performance improvement with 5 parties

is by up to a factor of 8.3 and up to a factor of 2 with 7 parties. The ring performance is superior

for all configurations evaluated except for the two largest matrices with 7 parties.

55

Protocol
Batch Size

Comm.
1 10 102 103 104 105 106

3PC

F (30 bits) 0.104 0.158 0.457 2.87 25.4 259 2,637 20
F (60 bits) 0.107 0.164 0.546 3.47 32.8 336 3,480 28

R (30 bits) 0.124 0.111 0.156 0.330 2.37 21.8 249 8
R (60 bits) 0.112 0.124 0.170 0.555 4.57 43.9 477 16

5PC

F (30 bits) 0.175 0.281 0.815 5.97 50.8 506 4,985 40
F (60 bits) 0.171 0.291 0.869 6.75 65.4 66.1 6,794 56

R (30 bits) 0.169 0.178 0.234 0.595 4.50 45.9 468 16
R (60 bits) 0.262 0.244 0.356 1.252 8.39 88.1 854 32

7PC

F (30 bits) 0.249 0.369 1.15 8.14 70.6 684 6,842 60
F (60 bits) 0.264 0.412 1.34 9.42 84.9 824 8,251 84

R (30 bits) 0.255 0.268 0.472 1.53 10.4 117 1,134 24
R (60 bits) 0.237 0.288 0.508 2.15 18.3 217 2,092 48

Table 4.7: Runtime of RandBit protocols in ms and communication is per party, per operation in
bytes.

Protocol
Batch Size

Comm.
1 10 102 103 104 105 106

3PC

[9] (32 bits) 19.7 15.9 16.2 16.7 20.0 138 1,368 –
[9] (64 bits) 22.8 25.5 25.2 24.4 30.6 254 2,201 –

R (30 bits) 0.564 0.577 0.832 2.96 20.5 207 1,978 32
R (60 bits) 0.622 0.737 1.111 5.66 43.2 405 4,175 68

Table 4.8: Runtime of edaBit protocols in ms compared to MP-SPDZ implementation. Communi-
cation for our solution is per party, per operation in bytes.

Tables 4.7 and 4.8 provide random bit generation results. To support k-bit integers, ring-based

RandBit following [62]’s construction requires ring Z2k+2 . Field-based RandBit from [47] does not

increase the field size; however, all uses of RandBit we are aware of are for operations such as

comparisons that utilize statistical hiding and, as a result, increase the field size by a statistical

security parameter κ (typically set to 48 in implementations). For this reason, our field-based

RandBit and MSB benchmarks utilize 79- and 109-bit fields. Both versions of RandBit in Table 4.7

communicate the same number of field or ring elements; however, the performance gain of the

ring version grows as we increase the batch size, reaching 10 to 12-fold improvement with 3 and

56

5 parties and indicating that local field-based computation is the bottleneck. This is in large part

due to the need to perform modulo exponentiations (see [47]). That is, even though the field-

based RandBit also relies on RSS, other non-RSS computation (such as modulo exponentiation) is

significant and the overall slowdown with the number of parties is not as large. In the 7-party

setting, the improvement of the ring-based variant is by up to a factor of 6.

The concept of edaBit is recent and for that reason in Table 4.8 we compare our implementation

to that reported in the original publication [79], available through MP-SPDZ repository [9]. Note

that each edaBit corresponds to generating k random bits together with the corresponding k-bit

random integer. It is clear from the table that MP-SPDZ’s implementation is optimized for large

sizes and fast networks. In particular, it gives comparable runtime for batches of size 1 and 1,000.

For the same reason, we were unable to accurately report communication cost per operation from

the experiments and refer the reader to the original publication [79] for that information. Note

that the times we measured for MP-SPDZ are very different from those originally provided in [79],

which reported the ability to generate 7.18 million 64-bit edaBits per second. This is over 15 times

faster than the fastest time per operation we record and stems from the differences in hardware.

In particular, experiments in [79] were run multithreaded on powerful AWS c5.9xlarge instances

with 36 cores and a 10 Gbps link. This distinction highlights the need to reproduce experiments on

similar hardware to draw meaningful comparisons about the performance of different algorithms.

Table 4.9 reports performance of multiple MSB protocols: (i) field-based protocol from [47]

using PICCO’s implementation with optimizations from [35], our ring implementations (ii) using

RandBit and (iii) using edaBit, and ring-based implementations from MP-SPDZ [9] (iv) using edaBit

and (v) using ABY3. The last two support only three-party computation.

The gap between the first two shows performance improvement due to switching from field-

57

Protocol
Batch Size

Comm.
1 10 102 103 104 105 106

3PC

F (30 bits) 1.29 3.71 23.7 206 2,051 21.8s 222s 624
F (60 bits) 1.97 7.51 54.7 471 4,654 46.7s 487s 864

R+rB (30 bits) 0.71 0.74 1.54 9.23 88.7 0.85s 8.25s 265
R+rB (60 bits) 0.76 1.01 3.92 29.2 322 3.04s 30.0s 1009

R+eB (30 bits) 1.23 1.24 1.51 4.14 30.7 0.27s 2.77s 57
R+eB (60 bits) 1.31 1.46 1.88 7.88 60.6 0.56s 5.71s 117

[9]+eB (32 bits) 23.3 23.1 22.9 23.5 27.3 0.18s 1.31s –
[9]+eB (64 bits) 34.2 31.6 33.4 32.5 35.9 0.25s 2.15s –

[9]+ABY3 (32 bits) 8.51 8.97 9.05 13.6 52.1 0.39s 3.66s –
[9]+ABY3 (64 bits) 9.09 9.06 8.88 14.2 58.5 0.41s 3.87s –

5PC

F (30 bits) 2.12 6.17 37.5 349 3,219 32.2s 333s 1248
F (60 bits) 3.32 11.9 84.0 738 7,021 68.8s 701s 1728

R+rB (30 bits) 1.28 1.37 2.98 18.4 197 1.82s 18.6s 530
R+rB (60 bits) 1.65 2.07 7.38 63.7 644 6.10s 60.5s 2018

R+eB (30 bits) 3.04 3.20 4.84 24.1 203 1.97s 19.1s 162
R+eB (60 bits) 3.96 3.93 8.77 48.0 422 4.24s 41.1s 338

7PC

F (30 bits) 3.08 9.14 48.4 452 4.42s 43.2s 447s 1872
F (60 bits) 4.55 13.1 101 943 9.36s 94.2s 959s 2592

R+rB (30 bits) 2.05 2.41 7.10 56.1 0.61s 5.95s 65.4s 795
R+rB (60 bits) 2.39 3.53 17.5 183 1.75s 17.6s 179s 3027

R+eB (30 bits) 5.17 6.35 21.9 173 1.63s 16.8s 165s 316
R+eB (60 bits) 5.99 8.87 41.0 371 3.57s 36.3s 356s 663

Table 4.9: Runtime of MSB protocols in ms unless marked otherwise. Communication is per party,
per operation in bytes. rB and eB indicate variants using RandBit and edaBit, respectively.

based to ring-based arithmetic. Both of them make a linear in k number of calls to RandBit, but our

implementation executes BitLT over Z2, while field-based uses a fixed field for all operations. As

a result, our ring RandBit-based MSB is up to 26.9 times faster than the field version with 3 parties,

up to 18.9 times with 5 parties, and up to 8.1 times with 7 parties.

If we compare our RandBit and edaBit MSB implementations, the use of the edaBit version

becomes advantageous starting from batch sizes of 100 with 3 parties, 1000–10000 with 5 parties,

but is not beneficial with 7 parties. This can be explained by the need to perform a larger number

of bitwise additions during edaBit generation as the number of computational parties increases.

58

0 1 2 3 4 5 6
Batch Size 10x

10−4

10−3

10−2

10−1

Ti
m

e/
B

at
ch

Si
ze

(m
s)

Ring k = 30
Ring k = 60

Field k = 30
Field k = 60

(a) Mul([a], [b])

0 1 2 3 4 5 6
Batch Size 10x

10−3

10−2

10−1

Ti
m

e/
B

at
ch

Si
ze

(m
s)

Ring k = 30
Ring k = 60

Field k = 30
Field k = 60

(b) RandBit()

0 1 2 3 4 5 6
Batch Size 10x

10−2

100

Ti
m

e/
B

at
ch

Si
ze

(m
s)

Ring k = 30
Ring k = 60

MP-SPDZ k = 32
MP-SPDZ k = 64

(c) edaBit(k)

0 1 2 3 4 5 6
Batch Size 10x

10−2

10−1

100

Ti
m

e/
B

at
ch

Si
ze

(m
s)

randBit k = 30
randBit k = 60

edaBit k = 30
edaBit k = 60

(d) MSB([a])

Figure 4.4: Three-party micro-benchmarks results.

MP-SPDZ’s edaBit-based implementation in the three-party setting generally took longer to

run than our edaBit-based implementation until the batch size became large. As explained earlier,

this is due to different performance emphases in the two implementations. ABY3 (three-party)

implementation is slower than what we obtain except for the largest batch sizes with the longer

bitlengths.

We also visualize time per operation with variable batch sizes in Figure 4.4 using three parties.

59

Multiplication and RandBit sub-figures compare ring versus field protocols, indicating a substan-

tial gap as expected; edaBit sub-figure compares our and MP-SPDZ implementations in the same

setting; and MSB sub-figure compares RandBit and edaBit variants.

It is also informative to compare our field versus ring results with those of SPDZ. While

SPDZ [65] and its ring version SPDZ2k [58, 62] use a much stronger adversarial model and differ-

ent type of SS, we would like to know whether similar savings are achievable in different settings.

[62] reports that performance improved by a factor of 4.6–4.9 for multiplication and by a factor of

5.2–6.0 for RandBit-based comparison on a 1Gbps LAN. The results are only provided as through-

put improvement and do not report different batch sizes. In our experiments, we observed greater

improvements, up to 20 times for multiplication and up to 26.9 improvement for MSB. This may

be explained by the fact that our techniques are more lightweight and perhaps switching to faster

arithmetic makes less of an impact in the SPDZ setting.

Table 4.10 compares the performance of our B2A construction (Protocol 4) to the RandBit-based

approach from [62]. Unlike previous experiments in this section, these experiments are conducted

with ring sizes of k = 32 and k = 64. This leads to the RandBit-based versions temporarily oper-

ating over the rings k = 34 and k = 66 (which necessitate switching to the integer types uint64 t

and unsigned int128, respectively). Our B2A approach for 3 parties consistently outperforms

the RandBit-based approach in terms of raw performance and total communication, echoing the

results reported for the 3-party-specific construction from [34]. The performance advantage of our

approach is maintained throughout all 5-party experiments and even for some of the 7-party batch

sizes, all while no longer needing to temporarily operate over a larger ring. We note that the 3- and

5-party results achieve faster runtimes than what is reported for our single-round multiplication

in Table 4.5. This is a byproduct of the asymmetric nature of our B2A protocol, coupled with the

60

Protocol
Batch Size

Comm.
1 10 102 103 104 105 106

3PC

[62] (32 bits) 0.174 0.217 0.217 0.564 3.45 33.8 392 14
[62] (64 bits) 0.248 0.255 0.293 1.03 7.72 75.4 814 26

R (32 bits) 0.069 0.070 0.073 0.120 0.921 7.60 118 8
R (64 bits) 0.071 0.074 0.075 0.157 1.52 15.8 240 16

5PC

[62] (32 bits) 0.427 0.449 0.496 1.30 7.74 84.0 840 28
[62] (64 bits) 0.473 0.484 0.513 1.58 12.6 142 1,467 52

R (32 bits) 0.229 0.226 0.262 0.715 5.20 55.1 672 24
R (64 bits) 0.238 0.239 0.273 1.11 9.19 116 1,268 48

7PC

[62] (32 bits) 0.693 0.694 0.790 2.13 24.4 252 2,626 42
[62] (64 bits) 0.678 0.692 0.877 3.42 48.2 497 4,900 78

R (32 bits) 0.368 0.441 0.699 4.35 43.1 451 4,590 48
R (64 bits) 0.374 0.448 1.04 7.44 80.2 840 8,491 96

Table 4.10: Runtime of B2A protocols in ms and communication is per party, per operation in
bytes.

specialized (cheaper) multiplication MulSparse. If a party or parties are not expecting to receive

computed shares from other participants(s) during the Input phase, they can immediately begin

the XOR component of the protocol. This phenomenon is most observable for 3 and 5 parties, but

less for 7 since Mul and MulSparse are performed in parallel in the first layer of the tree.

61

Chapter 5
Floating-Point Protocols

In this chapter, we extend our RSS framework to support floating-point operations by leveraging

the integer protocols developed in Chapter 4.

5.1 Floating-Point Background

Floating-point is the de facto means of representing real numbers on all modern computing de-

vices due to their improved precision over fixed-point or integer representations. The IEEE 754

standard [6] established the representation with p exponent bits and q mantissa (significand) bits.

Values are stored in their normalized form, i.e., the leading bit is nonzero. As a result, this leading

bit is not explicitly stored since its value is always 1 for a normalized number, effectively supply-

ing q + 1 bits of precision.

Following the conventions of [16] and [140], we denote a floating-point number ã, parameter-

ized by p, q ∈ Z>0, as the tuple ã = (z, s, e, m) and corresponds to the value

ã = (1− z) · (1− 2s) · 2e ·m

62

where m ∈
[
2q, 2q+1) is the unsigned fixed-point mantissa (significand) with scale q, e ∈ [−2p−1 +

1, 2p−1] is the p-bit unbiased signed exponent, z ∈ {0, 1}, which is the zero bit (set if ã = 0), and

s ∈ {0, 1} is the sign bit (set if ã ≤ 0). We use the notation ã.z to indicate the z component of the ã

tuple (and equivalently for the s, e, and m components).

The IEEE 754 floating-point specification outlines several exceptions for floating-point num-

bers [6, 89]: invalid operation (mathematically undefined behavior, e.g. square root of a negative

number); division by zero (e.g. dividing by zero, logarithm of zero) overflow and underflow (exceed-

ing the maximum and minimum representable values, respectively), and inexact (the rounded

result of a floating-point operation is not exact). The inexact exception has the lowest priority and

is only triggered when the output differs from the infinitely precise result. This is beyond the

scope of secure floating-point frameworks [16, 140] and as such can be ignored.

Checking for overflows and underflows can be conducted at the end of a floating-point proto-

col’s execution, and is accomplished by comparing the exponent to the largest and smallest rep-

resentable values. We omit this checking explicitly from our protocols since they can be enabled

on an ad hoc basis. Similarly, since we are exclusively considering basic arithmetic operations, the

only specific exception we need to check for is division by zero. This is realized by adding the

[Error] flag which gets set if the zero bit of the divisor is also set [16]. The approach for checking if

the error flag is set is dictated by the security requirements specified by the computation designer.

The computational parties may reconstruct the flag after each operation, after several operations,

or at the end of the computation alongside the final output of the computation to individuals

entitled to learn the result [83].

63

Protocol 18: ([a/2m], [a/2(m−2)])← TruncRNTE([a], m, rand), where MSB(a) = 0

// rand is determined prior to starting computation
1 if rand = eda then
2 ([r], [r̂], [ˆ̂r], [bk−1], [b0]1 , . . . , [bk−1]1)← edaTruncRNTE(k, m)

3 else
4 Generate k random bits [b0]1, . . . , [bk−1]1 in Z2
5 [bk−1]← B2A([bk−1]1)

6 Compute [r] = ∑k−1
i=0 2i[bi]1, [r̂] = ∑k−2

i=m 2i−m[bi]1, and [ˆ̂r] = ∑k−2
i=(m−2) 2i−(m−2)[bi]1

7 c← Openℓ([a] + [r])
8 c′ = (c/2m) mod 2ℓ−m−1

9 d′ =
(
c/2m−2) mod 2ℓ−m−3

10 [b] =
(
c/2ℓ−1)+ [bk−1]− 2

(
c/2ℓ−1) [bk−1]

11 [a′] = c′ − [r̂] + [b] ·2ℓ−m−1

12 [a′′] = d′ −
[ˆ̂r
]
+ [b] ·2ℓ−m−3

13 ([u]1, [v]1)← BitLT (c0, . . . , cm−1, [b0]1 , . . . , [bm−1]1), where [v]1 is the result for the first
m− 2 bits

14 [wi]1 ← ci ⊕ [bi]1 for i = 0, . . . , m− 3 (in Z2)
15 [w]1 ← kOR([w0]1, . . . , [wm−3]1) // Checking if any of m− 2 lower bits are set
16 Let [a′′0]1 = (c0 ⊕ [b0]1)⊕ [v]1 be the least significant bit of [a′′]
17 ([u], [v], [w], [a′′0])← B2A

(
[u]1, [v]1, [w]1, [a′′0]1

)

18 [a′] = [a′]− [u]
19 [a′′s] = [a′′]− [v] + ([w]− [a′′0]) // Removing carry and setting sticky bit
20 return ([a′], [a′′s])

5.2 Rounding and Truncation

Rounding (and consequently, truncation) is an integral component of all floating-point arithmetic

as a means for maintaining precision under repeated calculations [142]. The default rounding

mode in the IEEE 754 standard is round nearest, ties to even (or, equivalently, rounding half to

even), which rounds to the nearest value. If the number falls halfway between the representable

numbers (a “tie”), then it is rounded to the nearest value with an even least significant bit.

Conforming to this rounding specification requires two additional protocols, the first of which

is a modified version of our original truncation algorithm that we denote as TruncRNTE([a], m)

64

(Protocol 18). It deterministically truncates the input by m bits and m− 2 bits in parallel, returning

[a′] and [a′′s], respectively. The protocol carries the additional functionality setting the least signif-

icant bit of the shorter truncation to 1 (referred to as the “sticky bit”) if any of the lower m− 2 bits

of the input are set. This is determined by a call to kOR on line 15, and we subsequently apply

the bit to the interim shorter truncation result (line 19) If edaBit is used as the means for gen-

erating shared randomness, we invoke a modified version of our edaTrunc procedure (denoted

by edaTruncRNTE) which includes steps for generating the shorter shared random value [ˆ̂r] (see

Appendix A.2 for the full protocol description).

The core rounding functionality RNTE([a], m) is performed in Protocol 19. After obtaining the

two truncations ([a′] and [a′′s]), we must determine the appropriate rounding of the input. Denote

the three least significant bits of the shorter truncation as a2, a1, and a0 as the guard, round, and

sticky bits (respectively). As prescribed by the rounding mode, we round up when a1 and a0 are

set, indicating the round-up result is closer than the round-down result. In the event of a tie where

a1 is set but a0 is zero, we round up to even if a2 is set (the number is odd). This translates to the

boolean expression a1 ∧ (a2 ∨ a0).

From here, we can proceed in one of two directions: we can either perform bit-decomposition

on the three least significant bits and directly evaluate the expression in Z2, or encode the eight

possible values of the expression into table entries and perform a lookup operation (such as Ar-

rayRead from [36]). While SecFloat uses the latter approach, the choice is more nuanced in our

setting depending on whether precomputational performance is valued over active (online) com-

putation, as well as on the shared randomness generation technique (edaBit versus RandBit). For

the sake of simplicity and consistency with the protocols presented in Section 4.2, we proceed with

the bit-decomposition version, as private array access is outside the scope of this dissertation. We

65

Protocol 19: ([a/2m])round ← RNTE([a], m), where the output is correctly rounded

1 ([a′], [a′′s])← TruncRNTE([a], m, rand)
2 [a0]1, [a1]1, [a2]1 ← BitDec([a′′s], 3)
3 [b]1 ← [a1]1· ([a2]1 + [a0]1 − [a2]1·[a0]1) // a1 ∧ (a2 ∨ a0) in Z2
4 [b]← B2A([b]1)
5 return [a′] + [b]

Protocol Rand. Precomputation
Active

Rounds Communication

Trunc([a], m)
rB k·rB log (m(t + 1)) + 2 nt

(
k(t2 − t + 1)

+2(m− 1) + ℓ)eB eBtr(k, m)

TruncRNTE([a], m)
rB k·rB log (m(t + 1)) + 3 nt

(
4k(t2 − t + 1)

eB eBR(k, m) +3(m− 1) + ℓ+ 1)

RNTE([a], m)
rB (3 + k)·rB

log
(
3m(t + 1)2)+ 7 nt

(
5k(t2 − t + 1) + 2k
+3m + ℓ+ 6)eB eBR(k, m) + eB(3, 3)

Table 5.1: Performance of floating-point-specific truncation and rounding protocols where we
require aℓ = 0. For convenience, eB(k, ℓ) = edaBit(k, ℓ), rB = RandBit(), eBtr(k, m) =
edaTrunc(k, m), and eBR(k, m) = edaTruncRNTE(k, m).

refer the reader to [36] for more information about private array access constructions.

It is worth acknowledging that many works [16, 120, 101, 43, 45, 44] have opted to forego RNTE

in favor of the significantly cheaper alternative of performing a simple truncation (i.e., directed

rounding towards −∞). This is a valid rounding rule specified by the IEEE 754 standard, but not

the default since it does not eliminate bias under repeated addition or subtraction of independent

numbers [142]. Other works have considered truncating fewer bit(s) [144] altogether, such that

the resultant mantissa is slightly longer than that of the inputs. In the interest of flexibility, we

indicate where in the protocol’s execution one may choose a truncation method best suited for

their specific use case.

We compute the performance of the TruncRNTE and RNTE protocols in Table 5.1 and provide

the performance of our original truncation algorithm (Protocol 13) for the sake of comparison.

66

Protocol 20: [c̃]← FLMul([ã] ,
[
b̃
]
)

1 [m]← [ã.m]·[b̃.m]
2 [mq]← RNTE([m], q)
3 [mq+1]← RNTE([m], q + 1)
4 [b]← LT([mq], 2q+1)
5 [c̃.m]← [b]·[mq] + (1− [b])·[mq+1]

6 [c̃.z]← [ã.z] + [b̃.z]− [ã.z]·[b̃.z] // OR

7 [c̃.e]← (1− [c̃.z])·([ã.e] + [b̃.e] + q + 1− [b])
8 [c̃.s]← [ã.s] + [b̃.s]− 2[ã.s]·[b̃.s] // XOR
9 return [c̃]

5.3 Multiplication

Our protocol for multiplying two floating-point numbers [ã]·[b̃] is presented in Protocol 20. We

first multiply the mantissas to obtain a 2q + 2-bit fixed-point significand m. This product must be

rounded/truncated by either q or q + 1 bits based on whether the most significant bit of m is set.

For RNTE, we perform the roundings in parallel and then obliviously choose the correct mantissa

on lines 2 through 5. If truncation is used in place of rounding, we simply substitute calls to RNTE

with Trunc. Note, the multiplication protocol from [16] performs two sequential truncations of m

by q and one bit(s) since truncation over a field can be performed in a constant number of rounds.

The remainder of the protocol is straightforward. On line 7, we calculate the exponent by sum-

ming the input exponents and adjusting to accommodate for the prior truncation by adding [b].

In the same step, we normalize the exponent by adding q + 1 and multiply by the complement of

the output’s zero bit to account for non-zero values. The resultant sign and zero bits are computed

by XORing and ORing, respectively, the corresponding components of [ã] and [b̃].

67

5.4 Division

The logic behind floating-point division [c̃]← [ã]/[b̃] shares much in common with our integer di-

vision protocol outlined in Section 4.2.6.2 (and, by association, the fixed-point division algorithm

from [48]) with some key changes. The primary advantage is that for floating-point computation,

the mantissas are already normalized to the range
[
2q, 2q+1), thus eliminating the costly normal-

ization and reciprocal approximation. We present our floating-point division algorithm FLDiv in

Protocol 21.

The main complexity of floating-point division operation lies within the algorithm used to

compute the mantissa quotient [ã.m]/[b̃.m], which we denote by MDiv (Protocol 22). We adjust

the divisor by its zero bit b̃.z to prevent division-by-zero. From here, there are several directions

in which the mantissa division algorithm can proceed, each maintaining advantages depending

on the end-use application. The protocol from [16] entirely foregoes computing the initial recip-

rocal w and instead directly sets it to 2−(q+1) and subsequently scales all interim values in the

iterative portion up by 2q+1. The caveat is that more iterative steps (⌈log(q + 1)⌉) are required

to compensate for a more imprecise starting reciprocal. [44] refines this approach by reintroduc-

ing the initial approximation of w = 2.9142 − 2b and brings the number of iterations down to
⌈

log q+1
3.5

⌉
. This version also explicitly accounts for extending the fractional part to q + 1 + λ to

ensure the error introduced through iteration is bounded by < 2−(q+1). SecFloat [140] adopts a

different approach that combines a lookup table operation with two Newton-Raphson iterations.

This leads to a tighter relative error bound of 2−q−2, but the products and truncations in each it-

eration cannot be executed in parallel (the output of the first truncation is fed as an input into the

second). This more than doubles the number of rounds per iteration at the cost of a lower overall

68

Protocol 21: [c̃]← FLDiv([ã] ,
[
b̃
]
)

1 [m]← MDiv([ã.m], [b̃.m] + [b̃.z], 4)
2 [b]← LT([m], 2q+1)
3 [m′]← Trunc([m], 1)
4 [c̃.m]← [b]·[m] + (1− [b])·[m′]
5 [c̃.e]← (1− [ã.z])·([ã.e] + [b̃.e]− q− [b])
6 [c̃.s]← [ã.s] + [b̃.s]− 2[ã.s]·[b̃.s] // XOR
7 [c̃.z]← [ã.z]
8 [Error]← [b̃.z]
9 return ([c̃], [Error])

communication complexity.

We base our mantissa division solution MDiv on [44] due to its ability to be parallelized and the

similarities it shares with our integer division algorithm (Protocol 15). We highlight the differences

between MDiv and IntDiv below. First, the mantissa precision is extended by λ bits (lines 2 and 3)

prior to computing the quotient. As stated, the values are already normalized, and thus we com-

pute the initial approximation directly on line 4. The remaining steps of MDiv closely echo our

integer division protocol, and we defer to Section 4.2.6.2 for more details.

The computed mantissa quotient m is normalized to be q + 1 or q + 2 bits, which we resolve

by comparing m to 2q+1, truncating by one bit, and selecting the appropriately normalized result

(lines 2 to 4). The remainder of FLDiv involves adjusting the exponent by the number of bits

truncated (line 5), computing the output’s sign bit and zero bits (lines 6 and 7), and setting the

error flag according to the zero bit of the divisor ([Error] = [b̃.z]) (line 8).

5.5 Addition and Subtraction

Addition (and by extension, subtraction) of two floating-point inputs [c̃] ← [ã] + [b̃] is consider-

ably more involved than multiplication and division. The difficulty stems from having to align the

69

Protocol 22: [m]← MDiv([m1], [m2], λ)

1 α = 2q+1+λ, θ =
⌈

log q+1
3.5

⌉

2 [m′1] = 2λ[m1]

3 [m′2] = 2λ[m2]
4 [w] = (2.9142)·α− 2[m2]
5 [y]← [m′1]·[w]
6 [x]← [m′2]·[w]
7 [y]← Trunc([y], q + 1 + λ)
8 [x]← Trunc([x], q + 1 + λ)
9 [x] = α− [x]

10 for i = 1, . . . , θ − 1 do
11 [y]← [y]·(α + [x])
12 [x]← [x]·[x]
13 [y]← Trunc([y], q + 1 + λ)
14 [x]← Trunc([x], q + 1 + λ)

15 [y]← [y]·(α2λ + [x])
16 [m]← Trunc([y], q + 1 + 2λ)
17 return ([m])

exponents to be the same value, which necessitates left-shifting the mantissa of the larger input.

Once everything is aligned, we can proceed with the actual addition depending on the sign of the

smaller input and normalize the result.

We provide our FLAdd construction in Protocol 23 and follows the logic of [16] and [140].

Subtraction is realized by flipping the sign of the second argument and performing the addition

protocol.

The first step is to obliviously determine the larger and smaller of the two inputs on lines 1 to 6,

which we denote by the interim floating-point values βmax and βmin, respectively. We compute the

difference between the exponents ∆ = βmax.e− βmin.e, and determine whether we are performing

addition (s = 0) or subtraction (s = 1) (line 7). The difference ∆ is guaranteed to be within

the range [0, q + 1] and dictates in tandem with s how we proceed throughout the remainder of

the algorithm. If ∆ > q + 1 and we are performing addition, then the difference between the

70

two operands is too large, and we return β.max. If ∆ > q + 1 and the operating is subtraction,

this introduces two additional subcases that the protocol must account for, based on whether

βmax.m > 2q or βmax.m = 2q. For βmax.m > 2q, we decrement this value by 1 and set the output’s

exponent to βmax.e In the latter subcase βmax.m = 2q, the output’s mantissa is exactly q bits long,

all of which are set. This is accomplished by left shifting βmax.m by one, setting the least significant

bit, and decrementing the exponent by one to obtain βmax.e− 1. Both subcases are captured in a

single statement on line 11 by computing m1 = 2(βmax.m− s) + 1. From the former case, m1 will

be q + 2 bits long and need to be truncated back to q + 1 bits. From the latter case, m1 will be

exactly q + 1 bits long and the exponent will be correctly decremented on line 21.

Returning to the other parent case of ∆ ≤ q + 1, the final exponent will be βmin.e and the man-

tissa must be shifted by ∆ bits. This is accomplished through our Pow2 functionality (Protocol 11)

and we obtain the mantissa m2 = βmax.m·2∆ + (1− 2s)·βmin.m. This value is (q + ∆± 1)-bits long

and at most 2q + 3 bits. Both cases (∆ > q + 1 and ∆ ≤ q + 1) are captured on line 14. The result

is left-shifted by q + 1− ∆ bits to obtain a value m that is at most 2q + 3 bits long. We delay trun-

cating the computed mantissa until after normalization, such that the full precision of the result is

available for RNTE.

Normalizing m requires left-shifting the mantissa to remove any leading zero bits. This is

accomplished by bit decomposing m and computing the prefix-OR of its bits to determine the

position e0 of the most significant nonzero bit, relative to the total bitlength 2q + 3 (lines 15 to 18).

The normalization procedure concludes by left shifting the mantissa by e0 bits to guarantee the

mantissa is exactly 2q + 3 bits long and subsequently rounding the result to obtain a normalized

q + 1-bit value (line 20) The mantissa calculation concludes by accounting for when one (or both)

of the inputs are zero (line 22).

71

Protocol 23: [c̃]← FLAdd([ã] ,
[
b̃
]
)

1 ([cLT], [cEQ])← LT&EQ([ã.e], [b̃.e])
2 [mLT]← LT([ã.m], [b̃.m])

3 [βmax.e]← [cLT]·[b̃.e] + (1− [cLT])·[ã.e]
4 [βmin.e]← [cLT]·[ã.e] + (1− [cLT])·[b̃.e]
5 [βmax.m]← (1−[cEQ])·([cLT]·[b̃.m]+(1−[cLT])·[ã.m])+[cEQ]·([mLT]·[b̃.m]+(1−[mLT])·[ã.m])

6 [βmin.m]← (1−[cEQ])·([cLT]·[ã.m]+(1−[cLT])·[b̃.m])+[cEQ]·([mLT]·[ã.m]+(1−[mLT])·[b̃.m])

7 [s]← [ã.s] + [b̃.s]− 2[ã.s]·[b̃.s] // XOR
8 [d]← LT(q + 1, [βmax.e]− [βmin.e])
9 [∆] = (1− [d])·([βmax.e]− [βmin.e])

10 [2∆]← Pow2([∆], q + 2)
11 [m1] = 2([βmax.m]− [s]) + 1
12 [m2]← [βmax.m]·[2∆] + (1− 2[s])·[βmin.m]

13 [2q+1−∆]← Pow2(q + 1− [∆], q + 2)
14 [m]← ([d]·[m1] + (1− [d])·[m2])·[2q+1−∆]
15 [m0]1, . . . , [m2q+2]1 ← BitDec([m], 2q + 3)
16 [h0]1, . . . , [h2q+2]1 ← PreOR([m2q+2]1, . . . , [10]1)
17 [h0], . . . , [h2q+2]← B2A([h0]1, . . . , [h2q+2]1)

18 [e0] = 2q + 3−∑
2q+2
i=0 [hi]

19 [2e0] = 1 + ∑
2q+2
i=0 2i(1− [hi])

20 [m]← RNTE([2e0]·[m], q + 2)
21 [e] = [βmax.e]− [e0] + 1− [d]
22 [c̃.m]← (1− [ã.z])·(1− [b̃.z])·[m] + [ã.z]·[b̃.m] + [b̃.z]·[ã.m]
23 [c̃.z]← EQZ([c̃.m])

24 [c̃.e]←
(
(1− [ã.z])·(1− [b̃.z])·[e] + [ã.z]·[b̃.e] + [b̃.z]·[ã.e]

)
·(1− [c̃.z])

25 [s]← (1− [cEQ])·([cLT]·[b̃.s] + (1− [cLT])·[ã.s]) + [cLT]·([mLT]·[b̃.s] + (1− [mLT])·[ã.s])
26 [c̃.s]← ((1− [ã.z])·(1− [b̃.z])·[s] + (1− [ã.z])·[b̃.z]·[ã.s] + [ã.z]·(1− [b̃.z])·[b̃.s])
27 return [c̃]

We adjust the exponent on line 21 to account for both the mantissa shifts/truncation and the

special cases outlined above. For ∆ > q + 1, the final exponent is set to βmax.e for m > 2q (e0 = 1),

or βmax.e− 1 for m = 2q (e0 = 1). The exponent is computed as βmax.e− e0. For ∆ ≤ q + 1, the

mantissa was left shifted by a total of ∆ + 1− e0 bits, which is the amount exact βmin.e must be

adjusted by. Therefore, the final exponent is βmin.e + ∆ + 1− e0 = βmax.e− e0 + 1− d.

The remainder of the algorithm reconciles all the aforementioned scenarios, specifically when

72

one (or both) of the inputs are zero. This includes determining zero bit [c̃.z] by checking if the

computed mantissa is zero (line 23) and adjusting the exponent to account for zero values (line 24).

The sign bit [c̃.s] is set based on the previously computed comparison bits (line 25), as well as the

zero bits.

5.6 Comparisons

Protocol 24: [b]← FLLT([ã], [b̃])

1 ([eLT], [eEQ])← LT&EQ([ã.e], [b̃.e])
2 [m0]← (1− 2[ã.s])·[ã.m]

3 [m1]← (1− 2[b̃.s])·[b̃.m]
4 [mLT]← LT([m0], [m1])
5 [b+]← [eEQ]·[mLT] + (1− [eEQ])·[eLT]
6 [b−]← [eEQ]·[mLT] + (1− [eEQ])·(1− [eLT])
7 [b]← [ã.z]·(1− [b̃.z])·(1− [b̃.s]) + (1− [ã.z])·[b̃.z]·[ã.s]
+(1− [ã.z])·(1−[b̃.z])·([ã.s]·(1−[b̃.s])+(1−[ã.s])·(1−[b̃.s])·[b+]+[ã.s]·[b̃.s]·[b−])

8 return [b]

Floating-point less-than comparison [b] ← [ã]
?
< [b̃] functions as an extension of its integer

counterpart with additional steps to accommodate all possible operand configurations. Our con-

struction builds upon [16] and is presented in Protocol 24. The main logic relies upon determining

the larger of the two exponents and using the mantissas (with the operands’ signs applied) as a

fallback if the exponents are equal (lines 2 and 4). If both operands are nonzero and have the same

sign, the output is strictly determined by the exponent comparison. This translates into the quan-

tities b+ and b− when both operands are positive and negative, respectively. Line 7 computes the

resultant bit for all possible operand configurations, including when one or both inputs’ zero bits

are set and if the inputs have different signs. If both inputs are negative ã.s = b̃.s = 1 and their

exponents are different ã.e ̸= b̃.s, the argument with the smaller exponent is larger. The bulk of

73

the protocol can be executed in parallel, such as lines 1 through 4, as well as many of the products

on line 7.

We summarize the performance of the floating-point operations presented in this chapter in

Table 5.2.

Protocol Rand. Precomputation
Active

Rounds Communication

FLMul

rB (3k+7)rB log (3(k−1)(q+1))
log(t+1)2+13

nt
(
10k(t2−t+1)+13k

+3(2m+1)+2ℓ+10)eB eBR(k, q+1)+eBR(k, q)
+2·eB(3, 3)+eB(k, k)+rB

FLDiv

rB (1+(2θ+3)k)·rB log((q+5)θ(q+9)(t+1)θ+1)

+ log((k−1)(t+1))
+3(θ+1)+5

nt
(
(2θ+2)k(t2−t+1)

+(2θ+8)k+16(θ+1)
+2(2θ+1)(2q+5)

+q−3)
eB

eB(k, k)+rB+eBtr(k, 1)
+2θ·eBtr(q+5)+eBtr(q+9)

FLAdd

rB
(

5k+2q+9
+2 log(q+2)

)
·rB log((k− 1)k2(2q+3)2)

+ log((q+2)(t+1)6)
+2 log log(q+2)+30

nt
(
k(log(q+2)+2q+10)(t2−t+1)

+ log(q+2)2(log log(q+2)+k)
+ log(2q+3)(3(q+ 3

2))
+7q+45k+4)eB

4·eB(k, k)+2·eB(k, log(q+2))
+eB(k, 2q+3)+eB(3, 3)
+eBR(k, q+2)+3·rB

FLLT
rB 2(k + 1)·rB log(k(t + 1)) + 4 nt

(
2k(t2−t+1)
+20k−9)eB 2·(eB(k, k) + rB)

Table 5.2: Performance of floating-point operations. For convenience, eB(k, ℓ) = edaBit(k, ℓ), rB =
RandBit(), eBtr(k, m) = edaTrunc(k, m), and eBR(k, m) = edaTruncRNTE(k, m).

74

Part II

Information Disclosure Analysis for

Secure Function Evaluation

75

Chapter 6
Related Work

In what follows, we review prior literature on information disclosure from function output in the

context of computing on private data and related techniques that limit information disclosure.

6.1 Quantitative Information Flow

The field of quantitative information flow is closely related to our work. Denning [67] is credited as

the first to quantify information flow as a measure of the interference between variables at two

stages during a program’s execution (typically denoted by “high-” and “low-security” variables,

which equates to the target’s inputs and output in our setting, respectively). Smith [152] for-

mally established the foundations of quantifying the information leakage under the threat model

that an attacker can recover a secret in one attempt (denoted by the notion of vulnerability). It

has been shown by Massey [125] that the Shannon entropy cannot capture this information un-

der the guessing assumption, and Smith recommends min-entropy in its place. Alvim et al. [19]

generalized the min-entropy into the g-leakage to incorporate gain functions to model the benefit

an adversary gains from making guesses about the secret. Subsequent works encompassed vari-

76

ations on the g-leakage [18]. Other works in differential privacy feature derivations of leakage

bounds [54], leakage analysis in the case of an adaptive adversary [107], and knowledge-based

approaches for measuring risk [122, 138].

The fundamental advantage of our Shannon-based approach is the ability to derive closed-

form expressions for the information leakage of the average salary computation, while other met-

rics do not share this characteristic. For example, the chain rule of entropy (a simple, yet critical

component of our analysis) is not satisfied if min-entropy is used [98, 151] in place of Shannon

entropy. Our reductions would no longer hold, and we would be forced to resort to complete

enumeration or approximation methods to compute the entropy. However, in Section 8.2 we pro-

vide supplementary analysis that demonstrates similarities between Shannon entropy and min-

entropy-based analyses. We also remain open to evaluating other metrics in the future.

An additional distinction between our work and existing literature on (quantitative) informa-

tion flow is that we do not consider possible leakage from intermediate aspects of a computation’s

execution. Whereas other works may examine a program’s loops [122], side-channel vectors [107],

or inter-dependent structures [17], we strictly investigate the relationship between the output and

target’s input, since the function itself is assumed to be evaluated using secure multi-party proto-

cols.

6.2 Function Information Disclosure

Existing literature on information leakage from the output of a secure function evaluation is lim-

ited, relative to the rest of the field of secure computation. Secure multi-party protocols are de-

signed to guarantee no information is disclosed throughout a computation, but do not ensure

77

input protection after the output is revealed. The work of Deshpande et al. [70, 69, 68] was

pioneering in that respect and designed secure multi-party protocols for business applications

that ensured that the function being evaluated is non-invertible, i.e., no participant can infer other

participants’ inputs from the output. A trivially invertible example is the average salary calcu-

lation between two individuals since either party can recover the other’s input exactly. Desh-

pande et al. [70, 69] first addressed non-invertibility in the context of secure supply chain pro-

cesses. The proposed protocols offered protection from inference of future inputs to a repeated cal-

culation after a result is disclosed. A later work by Deshpande et al. [68] achieved non-invertibility

for a framework designed for secure price masking for outsourcing manufacturing. The authors

argued information leakage was minimal by analyzing mutual information between correlated

normal random variables, but did not consider other distributions or entropy metrics.

Ah-Fat and Huth [12] provided the first in-depth analysis of information leakage from the out-

puts of secure multi-party computations. The authors formalized two metrics to measure expected

information flow from the attacker’s and target’s perspectives, namely, the attacker’s weighted aver-

age entropy (awae) and target’s weighted average entropy (twae), respectively. Participants’ inputs are

modeled using probability distributions and were specified to be uniform, but this constraint can

be relaxed. The inherent difficulty of this entropy-based approach is the requirement to enumer-

ate every possible input combinations from all parties, which scales poorly as the input space and

number of participants grow. We utilize their definitions for our analysis and demonstrate their

utility to computation designers to determine potential disclosure about participants’ inputs

This model was expanded in [13] to encompass the Rényi, min-, and g-entropy. The extension

is presented in combination with a technique for distorting secure computation outputs to limit

information disclosure from the output and achieve a balance between accuracy and privacy. This

78

was further developed in [14] with a fuzzing method based on randomized approximations. A

closed-form expression for the min-entropy of a two- and three-party auction was derived in [15],

alongside a conjecture for the case with an arbitrary number of parties.

Conceptually, the notion of output privacy is related to our work. The terminology was intro-

duced in the field of data mining [40, 163, 108, 128, 131], with the goal of designing techniques

to protect inputs from inference attacks on the output model. Information about the inputs that

can be obtained from the output includes, but is not limited to, properties that can be uniquely

attributed to a small number of input participants. Conventional approaches for minimizing dis-

closure involve applying transformations on the result via monotonic functions [40] or even proac-

tive learning [163]. These techniques have little to no impact on the result of the computation. This

direction differs from our work since the type of disclosure they aim to rectify is not quantified.

6.3 Information Disclosure from Machine Learning Models

A topic that received significant attention in recent years is the training of machine learning (ML)

models on private data. In that context, the goal is to limit information disclosure about the

records on which a model has been trained when the model is released or otherwise is used

in privacy-preserving inference without disclosing the model itself. In that respect, it has been

shown that an ML model can disclose information about individual records on which it has been

trained [150, 153, 157, 53, 94, 154, 133, 91]. A model which consists of various weights and biases

may be prone to memorizing information about individual records. One possible attack vector

is through membership inference attacks (MIA), which refers to the following scenario: given a ma-

chine learning model in a sensitive context (e.g., corresponding to individuals with a certain med-

79

ical condition) and single data point, an attacker seeks to determine whether the data point was

part of the training dataset. An adversary may have varying levels of access to the model, where

the strictest configuration limits the adversary to black-box queries of the model and observe the

outputs on data of their choice.

Shokri et al. [150] were among the first to investigate this class of attacks and offered several

mitigation strategies for MIAs. Specifically, the entropy of a neural network’s output prediction

vector was improved by modifying (or adding) a softmax layer and increasing the normalization

temperature. Song and Mittal [153] formalized a suite of attacks based on a modified version of the

prediction entropy to benchmark a target model’s privacy risks. The authors found that several

state-of-the-art defense techniques could not effectively mitigate against their benchmark attacks.

Hu et al. [94] showed that the entropy of the target dataset (calculated by averaging the mean

entropy of all the features) influences the success of MIAs. The mutual information between model

parameters and training records quantified the information extracted by the target model from

the set of training records, i.e., captured from the features of the training data. A higher mutual

information was shown to indicate a greater likelihood of exposure to MIAs. Nasr et al. [133] used

the normalized entropy to measure the effectiveness of their MIA prevention mechanism.

6.4 Differential Privacy

The concept of differential privacy (DP) [73, 75, 76, 129] relies upon the principle of restricting the

information learned about a single individual within a sensitive dataset. Computation-specific

mechanisms are designed to operate on two datasets with the only difference that a single partic-

ipant is either absent or present, such that the outputs are statistically indistinguishable up to a

80

specified security parameter ε. Our analysis of information leakage after a secure function evalu-

ation is tangential to DP, where the loss is related to the security parameters. In the context of this

work, the number of participants, frequency of participation, and statistical parameters dictate the

amount of information revealed about the target. Furthermore, DP can be combined with secure

multi-party computation when the function reveals too much information about private inputs.

Barthe and Köpf [24] investigated the relationship between differential privacy and [152]’s

notion of information-theoretic leakage. The authors formulated a common model for leakage

and differential privacy and proved properties regarding the security guarantees (in terms of the

security parameter), as well as compositionality properties for combining two secure systems. If

the input domain is binary, the authors showed how to completely characterize the leakage in the

context of differential privacy. Larger input domains were limited to strict upper bounds in terms

of the security parameter and domain size.

We discuss differential privacy in the context of the average salary in more detail in Sec-

tion 8.1.4.

81

Chapter 7
Background

Our threat model considers protecting the privacy of input owners who contribute private data

into a joint computation. We study information disclosure about the private inputs from the out-

put of function evaluation, and it is assumed that the evaluation itself does not disclose any infor-

mation about the inputs (which can be achieved using a variety of known techniques). In what

follows, we refer to the parties contributing their private inputs into the computation as “compu-

tation participants,” as the mechanism for function evaluation itself is orthogonal to this work.

The adversary is interested in learning information about the private inputs of one or more

participants from the function output, and we denote the targeted individuals (one participant or

more participants treated as a group) as the target. The adversary can participate in the compu-

tation as well and control the inputs of one or more participants. All participants controlled by

the adversary are referred to as the “adversary.” The remaining input owners are independent of

the target and adversary and are called “spectators.” Their presence plays an important role of

protecting the target’s inputs.

82

7.1 Information Theory

Our analysis relies upon the notion of entropy to quantify information disclosure. Entropy is the

de facto choice for measuring the uncertainty of a random variable. It serves as the foundation of

the field as a whole and offers many desirable properties. The Shannon entropy [149], denoted by

H(X), measures the information of a discrete random variable X with mass function Pr(X = x)

supported by X and is defined as

H(X) = − ∑
x∈X

Pr(X = x) · log Pr(X = x),

where all logarithms are to the base 2. If we are interfacing with continuous distributions, we shift

to the differential entropy h(X) with density function f (x) over the support set X , defined as

h(X) = −
∫

X
f (x) log f (x)dx.

Note that while the Shannon and differential entropies are formulated in similar manners for

discrete and continuous distributions, there is no direct relationship between the two, since the

differential entropy of a discrete random variable would be infinite (see [57, Chapter 8.3]).

7.2 Formal Setting

Our information-theoretic analysis begins with establishing our formal setting, the first of which

involves how we differentiate inputs into a computation controlled by adversaries, targets, and

the remaining participants. Adopting [12]’s notation, let P denote the set of all participants in a

83

computation and n denote the number of participants, i.e., |P| = n. All participants P are divided

into three groups: parties controlled by an attacker A ⊂ P, a group of parties being targeted T ⊆

P \ A, and the remaining participants (spectators) S = P \ (A ∪ T). These groups are permitted

to be empty with the exception of the target group (e.g., we may encounter configurations where

S = {∅}). We use random variables to model values used in computations. In that respect, let

random variable XPi with support Pi model the input of a single participant Pi and xPi denotes

a value that XPi takes. In addition, let X⃗P = (XP1 , . . . , XPk) denote a multidimensional random

variable and x⃗P be a vector of the individual values of size k. We also let XP = ∑i XPi define a new

random variable representing the sum of the participants’ random variables. The same notation

applies to the sets A, T, and S.

Lastly, consider an arbitrary n-ary function f : P1 × P2 × · · · × Pn → O, where Pi is the

domain of the ith input corresponding to the input of party Pi and O is the codomain of f (set

possible outputs). We model the output by the random variable O (supported by O) and denote

the output value by o. Our analysis is based upon the assumption that all participants’ inputs

are independent and identically distributed, but we relax this assumption in our treatment of the

average salary in Section 8.3.

As stated in Section 6.2, Ah-Fat and Huth [12] provided multiple information-theoretic mea-

sures to quantify information disclosure after a function evaluation, which we use here:

Definition 2: jwae [12]

The joint weighted average entropy (jwae) of a target T attacked by parties A is defined over all x⃗A ∈ A

84

and x⃗T ∈ T as

jwae(x⃗A, x⃗T) = ∑
o∈O

Pr(O = o | X⃗A = x⃗A, X⃗T = x⃗T) · H(X⃗T | X⃗A = x⃗A, O = o).

This metric measures the information an attacker would learn (on average) about the target when

the input vectors are x⃗A and x⃗T. One can subsequently define the average of the jwae over all

possible x⃗T or x⃗A vectors weighted by their respective prior probabilities.

Definition 3: twae [12]

The target’s weighted average entropy (twae) of a target T attacked by parties A is defined for all x⃗T ∈ T

as

twae(x⃗T) = ∑
x⃗A∈A

Pr(X⃗A = x⃗A) · jwae(x⃗A, x⃗T).

The twae informs a target how much information an attacker can learn about its input when the

input is x⃗T.

Definition 4: awae [12]

The attacker’s weighted average entropy (awae) of a target T attacked by parties A is defined for all

x⃗A ∈ A as

awae(x⃗A) = ∑
x⃗T∈T

Pr(X⃗T = x⃗T) · jwae(x⃗A, x⃗T).

The awae informs an attacker about how much information it can learn about the target’s input

when the attacker’s input vector is x⃗A. The attacker can consequently compute the awae on all

values in A to determine which input maximizes the information learned about the target’s input

85

(and thus what should be entered into the computation). Using the Definition 2, it follows that:

awae(x⃗A) = ∑
x⃗T∈T

Pr(X⃗T = x⃗T) ∑
o∈O

(
Pr(O = o|X⃗A = x⃗A, X⃗T = x⃗T)

·H(X⃗T | X⃗A = x⃗A, O = o)
)

= ∑
x⃗T∈T

∑
o∈O

Pr(O = o, X⃗T = x⃗T | X⃗A = x⃗A) · H(X⃗T | X⃗A = x⃗A, O = o).

Since X⃗T is independent of X⃗A, we derive that awae equals to conditional entropy:

awae(x⃗A) = ∑
o∈O

Pr(O = o | X⃗A = x⃗A) · H(X⃗T | X⃗A = x⃗A, O = o) = H(X⃗T | X⃗A = x⃗A, O)

where the last equality is due to the definition of conditional entropy.

We consider several distributions of practical interest for a variety of applications. For our

analysis of the average salary function, we prioritize distribution where the sum of independent

individual random variables is well studied and their mass or density functions have closed-forms

expressions or can be reasonably approximated. This includes the following distributions:

• Discrete uniform U (a, b), where a and b are integers corresponding to the minimum and

maximum of the range of the support set {a, a + 1, . . . , b− 1, b}.

• Poisson Pois (λ), where λ ∈ R>0 is the shape parameter that indicates the expected (average)

rate of an event occurring over a given interval.

• Normal (Gaussian) N
(
µ, σ2), where µ ∈ R and σ2 ∈ R>0 correspond to the mean and

squared standard deviation, respectively.

• Log-normal logN
(
µ, σ2) with parameters µ ∈ R and σ2 ∈ R>0, which correspond to the

86

mean and squared standard deviation of the random variable’s natural logarithm.

The notation X ∼ Dist indicates that random variable X has distribution Dist.

87

Chapter 8
Average Salary: Single Evaluation

In this chapter, we study the information disclosure of the computation of the average:

o = f (x⃗A, x⃗T, x⃗S) =
1
n

(
∑

i
xTi + ∑

j
xAj + ∑

k
xSk

)
,

where o denotes the output of the function. Using our notation established in Section 7.2, the

output o by the random variable O defined over the domain O, namely

O =
1
n

(
∑

i
XTi + ∑

j
XAj + ∑

k
XSk

)
.

For the average, the 1/n factor can be ignored in the final expression since the number of partic-

ipants is typically known by all parties and can trivially be removed from the output. We omit it

throughout the remainder of our analysis of the average function.

88

0 5 10 15
Input xT or xA

2.8

3.0

3.2

3.4

3.6

3.8

E
nt

ro
py

(b
it

s)

twae(xT) awae(xA)

|S| = 1

|S| = 2

|S| = 3

|S| = 1

|S| = 2

|S| = 3

Figure 8.1: The twae(x⃗T) and awae(x⃗A) using inputs over U (0, 15) with a different number of
spectators |S|.

Recall that the computation is modeled by

O = f (X⃗A, X⃗T, X⃗S) = ∑
i

XTi + ∑
j

XAj + ∑
k

XSk , (8.1)

and we let s = |S| denote the number of spectators.

As a first step, we plot the values of awae and twae for our function of interest. Figure 8.1

illustrates these values with a single adversarial participant, a single target and a varying number

of spectators (1–3). All inputs follow the uniform distribution U (0, 15). Calculating the twae and

awae values using Definitions 3 and 4 requires enumerating all input and output combinations.

This quickly becomes computationally inefficient as the input space grows.

Each participant, acting as a target, can utilize the twae prior to the computation to determine

how much information an attacker can learn (on average) from the output for a specific input

that the participant enters into the computation. As the figure illustrates, the target’s remaining

89

average entropy is maximized when the input is in the middle of the range, indicating that those

values have better protection than inputs near the extrema. As the number of spectators increases,

the curves shift upwards, i.e., the uncertainty about the target’s input increases and the gap in the

uncertainty between different input values reduces.

The awae, on the other hand, gives an adversary the ability to determine which input to en-

ter into the computation that leads to the maximum information disclosure about a target’s input

(without knowing what input the target used). As displayed in the figure, the adversarial knowl-

edge does not change by varying its inputs into the computation. This is consistent with our

intuition that, given the output, the adversary can remove their contribution to the computation

and possess information about the sum of the inputs of the remaining parties. We formalize this

as the following result:

Claim 1

awae(x⃗A) is independent of attacker’s input vector x⃗A.

Proof. According to the chain rule of entropy which states that H(X, Y) = H(X | Y) + H(Y) [57,

Chapter 2.5], we have that:

H(X⃗T | X⃗A = x⃗A, O) = H(X⃗T, O | X⃗A = x⃗A)− H(O | X⃗A = x⃗A)

= H(X⃗T | X⃗A = x⃗A) + H(O | X⃗T, X⃗A = x⃗A)− H(O | X⃗A = x⃗A)

= H(X⃗T)+H

(
∑

i
XSi

)
−H

(
∑

i
XTi+∑

j
XSj

)
, (8.2)

which is independent of x⃗A.

90

Using our notation from Chapter 7, the above expression for awae(x⃗A) simplifies to

H(X⃗T) + H (XS)− H (XT + XS) = H(X⃗T | XT + XS). (8.3)

The next step is to determine which measure (awae or twae) we should use in our analysis

of the average salary computation. Ah-Fat and Huth [12] argued that the awae served as a more

precise metric for measuring information leakage of a secure function evaluation than twae for

their choice of function and used awae in their subsequent work [13]. Our perspective also aligns

with that conclusion. In particular, while the twae informs the target of the amount of information

leakage for the input they possess, the target may not be technically savvy enough to be able to

apply the metric and make an informed decision regarding computation participation (plus, the

choice to participate or not participate can leak information about their input). Perhaps more im-

portantly, a function needs to be analyzed by the computation designers in advance and without

access to the inputs of future computation participants to determine a safe setup for the partici-

pants. Thus, the available mechanism for this purpose is the attacker’s perspective or awae, and

we focus on this metric in the rest of this work.

Based on the above, in what follows we use H(X⃗T | XT + XS) to measure the leakage, and the

simplified function is

f (X⃗T, X⃗S) = ∑
i

XTi + ∑
j

XSj = XT + XS.

This refines the parameters we can vary in our analysis to (1) the number of participants in the

target and spectators groups and (2) the types of distributions and statistical parameters of the

91

inputs. Furthermore, the computational difficulty associated with directly computing the awae

is absent when using H(X⃗T | XT + XS). Instead, the computation simplifies to calculating the

entropy of sums of random variables.

We examine the behavior of the conditional entropy for several characteristic probability dis-

tributions next.

8.1 Single Execution Analysis

8.1.1 Discrete Distributions

We start with discrete input modeled using the uniform and Poisson distributions. The sum of

s identical independent Poisson random variables Xi ∼ Pois(λ) is equivalent to a single Poisson

random variables X = ∑i Xi ∼ Pois(sλ) with the mass function

Pr(X = x) =
(sλ)x e−sλ

x!
.

Note that the Poisson distribution is defined over all non-negative integers, hence the distribution

has infinite support. We choose to halt the calculation of H(X) when Pr(X = x) < 10−7 as the

contribution of events beyond this point to the entropy is infinitesimal.

Conversely, the sum of s identical independent uniform random variables Xi ∼ U (0, N − 1) is

not immediately obvious. Caiado and Rathie [41] derived several equivalent expressions for the

mass function of the sum of s uniform random variables, one of which we use in our analysis and

92

0 20 40 60 80 100
No. spectators

2.5

3.0

3.5

4.0

4.5

5.0

5.5
E

nt
ro

py
(b

it
s)

H(~XT | XT + XS)

H(~XT)

λ = 4

λ = 8

λ = 16

λ = 32

λ = 64

λ = 128

(a) Target’s entropy before H(X⃗T) and after H(X⃗T |
XT + XS) the execution.

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0.0

0.1

0.2

0.3

0.4

0.5

E
nt

ro
py

(b
it

s)

λ = 4

λ = 8

λ = 16

λ = 32

λ = 64

λ = 128

(b) Target’s absolute entropy loss H(X⃗T) − H(X⃗T |
XT + XS).

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0

5

10

15

P
er

ce
nt

ch
an

ge
(%

)

λ = 4

λ = 8

λ = 16

λ = 32

λ = 64

λ = 128

(c) Target’s relative entropy loss H(X⃗T)−H(X⃗T |XT+XS)

H(X⃗T)
.

Figure 8.2: Analysis of target’s entropy loss using the Poisson distribution with Pois(λ), and vary-
ing λ with |T| = 1.

is defined as:

Pr(X = x) =
s

Ns

(⌊x/N⌋
∑
p=0

Γ (s + x + pN) (−1)p

Γ(p + 1)Γ(s− p + 1)Γ(x− pN + 1)

)
,

where Γ(s) = (s− 1)! is the Gamma function. The domain of X is {0, . . . , s(N − 1)}.

Our analysis of awae for these two distribution is given in Figures 8.2 and 8.3, respectively. We

93

0 20 40 60 80 100
No. spectators

3

4

5

6

7

8
E

nt
ro

py
(b

it
s)

H(~XT | XT + XS)

H(~XT)

N = 8

N = 16

N = 32

N = 64

N = 128

N = 256

(a) Target’s entropy before H(X⃗T) and after H(X⃗T |
XT + XS) the execution.

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0.0

0.2

0.4

0.6

E
nt

ro
py

(b
it

s)

N = 8

N = 16

N = 32

N = 64

N = 128

N = 256

(b) Target’s absolute entropy loss H(X⃗T) − H(X⃗T |
XT + XS).

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0

5

10

15

20

P
er

ce
nt

ch
an

ge
(%

)

N = 8

N = 16

N = 32

N = 64

N = 128

N = 256

(c) Target’s relative entropy loss H(X⃗T)−H(X⃗T |XT+XS)

H(X⃗T)
.

Figure 8.3: Analysis of target’s entropy loss using the uniform distribution with U (0, N − 1), and
varying N with |T| = 1.

compute and display

• the original entropy of target’s inputs prior to the computation H(X⃗T) (subfigure a)

• the awae or target’s remaining entropy after the computation H(X⃗T | XT + XS) (subfigure a)

• their difference of the two that represents the absolute entropy loss H(X⃗T)− H(X⃗T | XT +

XS) (subfigure b) and

94

• the entropy loss relative to the original entropy prior to the execution (H(X⃗T) − H(X⃗T |

XT + XS))/H(X⃗T) (subfigure c)

with a single target (|T| = 1), a varying number of spectators, and varying distribution param-

eters. Relative entropy loss is included to demonstrate to potential input contributors, who are

likely non-experts, that information disclosure is small. That is, disclosure of, e.g., 5% of input’s

information is easier to explain to non-experts than 0.1 bits of entropy. The absolute loss is equiv-

alent to the mutual information between the target input and the output:

I(X⃗T; O) = H(X⃗T)− H(X⃗T | XT + XS).

Figure 8.2 presents this information for the Poisson distribution with λ ∈ {4, 8, . . . , 128}. In

Figure 8.2a, entropy after the execution converges toward the corresponding entropy prior to the

execution for all values of λ as the number of spectators increases. Increasing λ by a factor of

two repeatedly yields an upward shift of these two curves by a constant amount while preserving

their respective shapes. The increase is expected as a result of the inputs having more entropy as

λ increases, but the shape of the remaining entropy is notable, as λ does not appear to impact the

entropy loss. This is further confirmed when displaying the absolute entropy loss in Figure 8.2b:

The resultant curves overlap each other, regardless of λ.

The relative entropy loss in Figure 8.2c, calculated as a percentage of the target’s initial entropy,

demonstrates how many spectators the computation needs to include to lower the entropy loss to

the desired level. The larger the original entropy is (larger λ), the fewer spectators will be needed

to stay within the desired percentage. For example, 5 spectators are needed with λ = 4 to limit

relative loss to 5% (marked by ■) and 24 spectators are needed to cap the loss at 1% (marked by

95

×). When λ = 128, the number of spectators reduces to 3 and 13 to maintain loss tolerances of 5%

and 1%, respectively.

The same trends hold for the uniform distribution in Figure 8.3, where we use N ∈ {8, 16, . . . ,

256}, but the values themselves slightly differ. For example, the absolute entropy loss in Fig-

ure 8.3b is slightly larger than the loss in Figure 8.2b when the number of spectators is small.

When N = 8 with 3 bits of original entropy, 5 and 24 spectators are needed to achieve at most 5%

and 1% relative loss, respectively. This is the same as what was observed for Poisson distribution

with 3-bit inputs (λ = 4).

8.1.2 Continuous Distributions

For continuous distributions, we shift to differential entropy and analyze normal and log-normal

distributions, the latter of which is typically used to model salaries. Recalling the fact that there

is no direct relationship between differential and Shannon entropy (see [57, Chapter 8.3]), we

nonetheless demonstrate that they exhibit very similar behavior for the average computation.

The differential entropy of a normal random variable Xi ∼ N (µ, σ2) is h(Xi) =
1
2 log

(
2πeσ2) [57,

Chapter 8.1]. The sum of s identical normal random variables is also normal, namely X ∼

N (sµ, sσ2). This enables us to directly apply the differential entropy definition to the sum.

The log-normal distribution is a well-established means of modeling salary data for 99% of the

population [55], with the top 1% modeled by the Pareto distribution [155]. The differential entropy

of a log-normal random variable Xi ∼ logN (µ, σ2) is h(Xi) = log
(

eµ+ 1
2
√

2πσ2
)

. However,

the sum of s log-normal random variables has no closed form and is an active area of research

[23, 56, 82, 25, 26, 145, 147, 164]. We adopt the Fenton-Wilkinson (FW) approximation 1 [82, 56]

1Other approximations for the sum of log-normal random variables are difficult to translate into an expression for
the differential entropy and hence we choose the FW approximation. Its disadvantage is that the FW approximation

96

0 20 40 60 80 100
No. spectators

2.5

3.0

3.5

4.0

4.5

5.0

5.5
E

nt
ro

py
(b

it
s)

h(~XT | XT + XS)

h(~XT)

(0, 4)

(0, 8)

(0, 16)

(0, 32)

(0, 64)

(0, 128)

(a) Target’s entropy before h(X⃗T) and after h(X⃗T |
XT + XS) the execution.

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0.1

0.2

0.3

0.4

0.5

E
nt

ro
py

(b
it

s)

(0, 4)

(0, 8)

(0, 16)

(0, 32)

(0, 64)

(0, 128)

(b) Target’s absolute entropy loss h(X⃗T) − h(X⃗T |
XT + XS).

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0.0

2.5

5.0

7.5

10.0

12.5

15.0

P
er

ce
nt

ch
an

ge
(%

)

(0, 4)

(0, 8)

(0, 16)

(0, 32)

(0, 64)

(0, 128)

(c) Target’s relative entropy loss h(X⃗T)−h(X⃗T |XT+XS)

h(X⃗T)
.

Figure 8.4: Analysis of target’s entropy loss using the normal distribution with N (0, σ2), and
varying σ2 with |T| = 1.

that specifies a sum of s identical independent log-normal random variables Xi ∼ logN (µ, σ2) as

another log-normal random variable X ∼ logN (µ̂, σ̂2) with parameters

σ̂2 = ln
(

exp(σ2)− 1
s

+ 1
)

, µ̂ = ln(s · exp(µ)) +
1
2
(
σ2 − σ̂2) .

deteriorates for σ2 > 4 and small values of x in the density function [25, 164]. Fortunately, our σ2 is sufficiently small,
allowing us to use the FW approximation free of consequence.

97

0 10 20 30 40 50
No. spectators

2.5

2.6

2.7

2.8

2.9

3.0

E
nt

ro
py

(b
it

s)

h(~XT | XT + XS)

h(~XT)

(1.67, 0.15)

(a) Target’s entropy before h(X⃗T) and after h(X⃗T |
XT + XS) the execution.

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0.1

0.2

0.3

0.4

0.5

0.6

E
nt

ro
py

(b
it

s)

(1.67, 0.15)

(b) Target’s absolute entropy loss h(X⃗T) − h(X⃗T |
XT + XS).

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0

5

10

15

P
er

ce
nt

ch
an

ge
(%

)

(1.67, 0.15)

(c) Target’s relative entropy loss h(X⃗T)−h(X⃗T |XT+XS)

h(X⃗T)
.

Figure 8.5: Analysis of target’s entropy loss using the log-normal distribution with logN (1.6702,
0.145542) and |T| = 1.

This enables us to compute differential entropy using a closed-form expression. Unlike prior

distributions, we use a single set of µ and σ2 parameters calculated from real salary data in [42];

namely, µ = 1.6702 and σ2 = 0.145542.

Figures 8.4 and 8.5 present experimental evaluation of entropy loss with a single target and a

varying number of spectators for normal and log-normal distributions, respectively. As before, we

report the target’s entropy before and after the execution, the difference of the two as the absolute

98

entropy loss, and the entropy loss relative to the entropy before the execution.

In Figure 8.4 (normal), we set the mean µ = 0 for all experiments (since differential entropy

does not depend on µ) and vary σ2 from 4 to 128. The results are consistent with the discrete coun-

terparts in terms of the trends, curve shapes, and specific values. The absolute loss in Figure 8.4b

is once again constant for any σ2 and the relative loss is dictated by the amount of input’s entropy

in Figure 8.4c. When σ2 = 4 and inputs have 3 bits of entropy, the number of spectators required

to maintain at most 5% and 1% entropy loss (5 and 24 spectators, respectively) is the same as for

Poisson and uniform distributions with 3-bit inputs (λ = 4 and N = 8, respectively). With 5.5-bit

inputs (σ2 = 128), 3 and 13 spectators are needed to achieve at most 5% and 1% loss, respectively,

which is the same for the Poisson distribution with 5.5-bit inputs (λ = 128).

The results in Figure 8.5 (log-normal with real salary parameters) are consistent with both

the discrete and continuous distributions. Surprisingly, we observe the same 5 and 24 specta-

tors achieve at most 5% and 1% relative loss, as observed with all other distributions (with input

original entropy being slightly over 3 bits).

Before concluding our discussion of continuous distributions, we are able to show one more

result. We experimentally demonstrated that the amount of absolute entropy loss is parameter-

independent for several distributions, but we can formally prove this for normally distributed

inputs:

Claim 2

If the inputs are modeled by independent identically distributed normal random variables, the ab-

solute entropy loss h(X⃗T) − h(X⃗T | XT + XS) depends only on the number of target |T| = t and

spectator |S| = s inputs and is 1
2 log

(t
s + 1

)
.

99

Proof. Let |T| = t and |S| = s, such that XT ∼ N (0, tσ2) and XS ∼ N (0, sσ2). The absolute

entropy loss is therefore

h(X⃗T)− h(X⃗T | XT + XS) = h(X⃗T)−
(

h(X⃗T) + h (XS)− h (XT + XS)
)

= h (XT + XS)− h (XS)

=
1
2

log 2πe(t + s)σ2 − 1
2

log 2πesσ2

=
1
2

log
(

t
s
+ 1
)
= Θ

(
log
(

t
s
+ 1
))

,

which depends only on s and t.

8.1.3 Discrete versus Continuous Distributions

We next compare the information loss across all four (discrete and continuous) distributions. We

choose parameters to maintain the initial entropy of an input, H(Xi) or h(Xi), to be approximately

3 bits, as to reasonably correspond to the log-normal distribution. This leads to Pois(4), U (0, 7),

and N (0, 4). We plot this information for a single target and a varying number of spectators in

Figure 8.6.

In the figure, all distributions converge with ≥ 4 spectators and are very close even with 3

spectators. This convergence on large values is expected as a consequence of the central limit

theorem. From the four distributions, the closest are the Poisson results with λ = 4 (discrete)

and the normal distribution N (0, 4) (continuous). Unlike the normal, log-normal, and single-

variate uniform distributions, an exact expression of the entropy of a Poisson distribution has

not been derived. Instead, when computing the necessary values in Section 8.1.1, we directly

applied the definition of Shannon entropy. To draw a parallel between discrete and continuous

100

distributions, and specifically show a similarity between Poisson and normal distributions, we

turn to an approximation of Poisson distribution’s entropy computation.

It was conjectured that for sufficiently large λ (e.g., λ > 10), the Poisson distribution’s Shannon

entropy can be approximated by H(Xi) = 1
2 log(2πeλ), which resembles h(Xi) = 1

2 log(2πeσ2)

used for normal distributions. Evans and Boersma [81] proposed a tighter bound (further formal-

ized by Cheraghchi in [51]), to be

H(Xi) =
1
2

log(2πeλ)− 1
12λ
− 1

24λ2 −
19

360λ3 + O(λ4)

and remains close to that of normal distribution with σ2 = λ.

One implication of this result for us is that Claim 2, which we demonstrated for normal distri-

butions, would apply to the approximation of Poisson distributions as well. As a result, we obtain

independence of the (absolute) entropy loss of distribution parameters for both discrete and con-

tinuous distributions and almost identical behavior across the distributions as a function of the

number of spectators.

8.1.4 Comparison to Differential Privacy

The purpose of this work is to measure information disclosure from function output, which is the

first necessary step to determine whether the function is suitable for evaluation on private data.

Once it is determined that it is not, the second question to answer is how the function or the setup

is to be modified to reduce information disclosure to a controlled sufficiently small level. This can

be achieved by different means, e.g., by enrolling more participants as suggested in this work or

by modifying the function to be evaluated (e.g., by injecting noise in the output). In the context of

101

2 4 6 8 10
No. spectators

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
nt

ro
py

(b
it

s)

Pois(4)

U(0, 7)

N (0, 4)

logNFW(1.67, 0.15)

Figure 8.6: Comparing target’s absolute entropy loss for discrete H(X⃗T)− H(X⃗T | XT + XS) and
continuous h(X⃗T)− h(X⃗T | XT + XS) distributions.

the average computation we consider in this work, the information disclosure can be reduced to

any desired level by controlling the number of participants. This eliminates the need for function

modification. Nevertheless, we provide a detailed analysis of the suitability of differential privacy

(DP) for this application. In short, when the number of participants is large, information disclosure

from the output is very low and DP is not needed, but when the number of participants is small,

applying a DP mechanism results in distortion that impairs utility.

We start with a brief overview of the fundamentals of DP. The core tenet of DP involves restrict-

ing the information learned about a single individual within a sensitive dataset; this is normally

accomplished by introducing noise to the result. Formally, DP is defined as follows:

Definition 5: (ε, δ)-differential privacy [74]

Let M be a mechanism that takes an input database D of size n supported by D and produces a

randomized output in the set S. ThenM is considered to be (ε, δ)-differentially private for ε, δ ≥ 0 if

102

for all adjacent databases D and D′ (differ by a single entry) and all sets S ⊆ Range(M) if

Pr [M(D) ∈ S] ≤ exp(ε) · Pr
[
M(D′) ∈ S

]
+ δ,

where Range(M) is the set of all possible outputs of the mechanismM.

The above definition encapsulates both “pure” DP (δ = 0) and “approximate” DP which al-

lows an additive privacy loss of δ > 0, where δ is negligible in the size of the database. We

formulate our arguments under the stronger assumption of pure DP.

Though many differentially private mechanisms exist (see, e.g., [118, 127]), we restrict our

view to the Laplace mechanism [74] due to its well-established nature and reliable performance for

low-dimensional queries [134]. We construct the one-dimensional Laplace mechanism since the

output of the average function is a single value. We require the notion of function sensitivity, i.e.,

the maximum difference in the output of f when applied to two adjacent datasets:

Definition 6: Function sensitivity [73]

Let f : Dn → R. The sensitivity of f is ∆ f = maxD,D′ | f (D)− f (D′)| , where D and D′ are adjacent.

We can now formally define the Laplace mechanism:

Definition 7: Laplace mechanism [73]

Let f : Dn → R. Given ε ≥ 0 and sensitivity ∆ f , the Laplace mechanism is defined as M(D) =

f (D) + L, where L ∼ Lap(∆ f /ε) is a Laplace random variable.

To gauge how DP is not an impactful (and potentially detrimental) solution for the average,

we compute how much noise is required to maintain differential privacy for a given ε. The ab-

103

solute error introduced by a mechanism M (or, analogously, the “utility” of the mechanism in

the literature) is measured via a loss function ℓ. The function ℓ(f (D),M(D)) refers to the loss

of an individual user when the output of the function is f (D) and the mechanism’s (perturbed)

output is M(D). The choice of ℓ is arbitrary, but most DP literature [88] uses the mean error

ℓ(f (D),M(D)) = | f (D)−M(D)|, and thus we use it for our analysis. Given a statistical sig-

nificance α, it can be shown (via application of Chernoff bounds) that the error introduced by the

Laplace mechanism is bounded by

ℓ(f (D),M(D)) = | f (D)−M(D)| ≤
(

∆ f
ε

)
ln
(

1
α

)
,

with probability 1 − α (i.e., the confidence level). We interpret this bound as the “worst-case”

upper bound on the distance between the true and the perturbed outputs. To transform this

bound into a measurable quantity, we compare it against the expected value of the function with

no distortion applied as a percentage, i.e., the relative error.

For this discussion, we consider participants’ inputs are modeled by the uniform distribution

Xi ∼ U (0, N − 1) since the sensitivity of f can be exactly derived for bounded distributions. For

the average with uniformly distributed inputs, the function sensitivity is exactly ∆ f = N− 1 since

the output of the function o can differ by at most N − 1 if one individual does not participate.

Given the expected value for the computation sum of n uniform random variables of E [∑i Xi] =

n N−1
2 , the maximum possible error (denoted by ∇) introduced by the mechanism is

∇ =
(∆ f /ε) ln(1/α)

n(N − 1)/2
=

2 ln(1/α)

εn
.

104

This quantity is monotonically decreasing in n such that as n increases, the bound on the error ∇

shrinks to zero. This echoes the sentiment in DP literature that databases are typically assumed to

be large.

Consider the example of 6 participants (5 spectators, 1 target) with Xi ∼ U (0, 7), ε = 1, and a

standard [93, 134] 95% confidence level (α = 0.05). From our analysis in Section 8.1.1, this ensures

the relative entropy loss for the target is at most 5%. However, the relative error introduced by

the Laplace mechanism is at most ∇ = 99.8%, implying that the output of the computation can

vary so drastically as to render the output unusable. Placing this in the context of the Boston

gender pay gap study, where the goal was to determine the difference between male and female

average salaries, the error is too large for reliable decision-making. Imposing a stricter bound on

the relative entropy loss of 1% by increasing the number of participants to 25 reduces the upper

bound on the error to∇ = 24.0%. We find disclosure of 1% of the input’s entropy (e.g., about 0.03

bits for this application) to be acceptable, at which point there is no longer a need to use DP, and

we can output precise results.

To summarize, increasing the number of participants is a natural mechanism for lowering

information disclosure for the average computation. DP is of limited utility in this context, as

applying it to the setting where the number of participants cannot be increased results in utility

loss.

8.2 Min-Entropy Analysis

We treat min-entropy as an alternative to Shannon entropy, which was studied in the context of

information flow by Smith [152]. While we are unable to go as far in our analysis as in the case

105

of (Shannon) entropy, we certainly observe similar trends. We begin by defining the concept of

vulnerability:

Definition 8: Vulnerability, [152]

Given a discrete random variable X with support X , the vulnerability of X, denoted by V∞(X) over

the unit interval [0, 1] is given by V∞(X) = maxx∈X Pr(X = x).

The vulnerability V∞(X) is interpreted as the worst-case probability that an adversary could

guess the value of X in one attempt. If m guesses are allowed, the adversary’s success probability

is at most mV∞(X). The implication is that if the vulnerability with a practical number of m guesses

is significant, then V∞(X) must also be significant. Since the vulnerability is a probability, we can

convert it to an entropy measure (in bits) by taking the logarithm of V∞(X). Conveniently, this is

exactly the definition of min-entropy H∞(X):

H∞(X) = log
1

V∞(X)
.

Smith’s [152] motivation for departing from Shannon entropy stems from its ineffectiveness of

properly assessing the threat the output Y has on its input X.

Since our analysis studies the relationship between input and output random variables (i.e.

XT and O), a necessary extension is the conditional vulnerability, which specifies the expected prob-

ability of guessing X in one try, given that Y is observed:

106

Definition 9

Given two random variables X and Y with supports X and Y , respectively, the conditional vulnera-

bility V∞(X | Y) is

V∞(X | Y) = ∑
y∈Y

Pr(Y = y) ·V∞(X | Y = y),

where V∞(X | Y = y) = maxx∈X (Pr(X = x | Y = y)) .

Having established the necessary foundations of min-entropy, we are equipped to extend our

single-execution analysis of Section 8.1 from the perspective of min-entropy:

Definition 10

The attacker’s weighted average min-entropy (awae∞) of a target X⃗T attacked by parties A is defined

for all x⃗A ∈ A as

awae∞(x⃗A) = H∞(XT | O, X⃗A = x⃗A)

= − log ∑
o∈O

Pr(O = o | X⃗A = x⃗A) ·V∞(X⃗T | X⃗A = x⃗A, O = o),

where V∞(X⃗T | X⃗A = x⃗A, O = o) is the conditional vulnerability defined above.

The above definition is a concrete min-entropy specification of Ah-Fat and Huth’s [13] gener-

alized awae, which is parameterized by α and a gain function g. We can manipulate Definition 10

into terms consistent with Section 8.1 by plugging in the expression for conditional vulnerability:

awae∞(x⃗A) = − log ∑
o∈O

Pr(O = o | X⃗A = x⃗A) ·
(

max
x⃗T∈T

Pr(X⃗T = x⃗T | X⃗A = x⃗A, O = o)
)

= − log ∑
o∈O

Pr(O = o | X⃗A = x⃗A)

107

·
(

max
x⃗T∈T

Pr(O = o | X⃗T = x⃗T, X⃗A = x⃗A) · Pr(X⃗T = x⃗T)

Pr(O = o | X⃗A = x⃗A)

)

= − log ∑
o∈O

(
max
x⃗T∈T

Pr(O = o | X⃗T = x⃗T, X⃗A = x⃗A) ·Pr(X⃗T = x⃗T)
)

.

In the second line we invoked Bayes’ theorem, and in the third line we observed that the denomi-

nator is a constant factor in the max expression and could thus be factored out and subsequently

cancelled with the leading Pr(O = o | X⃗A = x⃗A).

In Claim 1, we proved awae(x⃗A) was independent of the attacker’s input x⃗A. Conversely,

awae∞(x⃗A) cannot be simplified further to prove the claim holds. Hence, we conjecture the fol-

lowing:

Conjecture 1

awae∞(x⃗A) is independent of attacker’s input vector x⃗A.

We can, however, repeat the calculation of Figure 8.1 using min-entropy. In Figure 8.7a, we

once again observe the same behavior that the adversarial knowledge does not change by vary-

ing its inputs into the computation.2 This suggests the conjecture holds for the average salary

computation. Hence, we assume such in our subsequent analysis.

The next logical step is to examine how the effect transitioning from Shannon entropy to min-

entropy has on the absolute loss. We compute and display both absolute losses in Figure 8.7b,

where participants’ inputs are modeled by the Poisson distribution (as in Section 8.1.1). As ob-

served previously in Figure 8.2b, the Shannon absolute loss curves all overlap each other. Inter-

estingly, we observe the min-entropy absolute loss curves converge towards their Shannon coun-

terparts as λ grows. This suggests that for a sufficiently large statistical parameter, the choice of

2Interestingly, awae∞(x⃗A) is the same for |S| = 1 and |S| = 2 and the curves overlap on the plot.

108

0 5 10 15
Input xA

3.05

3.10

3.15

3.20

3.25

3.30
E

nt
ro

py
(b

it
s)

|S| = 1

|S| = 2

|S| = 3

|S| = 4

|S| = 1

|S| = 2

|S| = 3

|S| = 4

(a) The awae∞(x⃗A) using uniformly distributed in-
puts over U (0, 15) with a different numbers of spec-
tators |S|.

1 3 5 7 9 11 13 15 17 19 21 23 25
No. spectators

0.0

0.1

0.2

0.3

0.4

0.5

E
nt

ro
py

(b
it

s)

H(~XT)−H(~XT | XT + XS)

H∞(~XT)−H∞(~XT | XT + XS)

λ = 4

λ = 8

λ = 16

λ = 32

H(~XT)−H(~XT | XT + XS)

H∞(~XT)−H∞(~XT | XT + XS)

(b) Comparing the Shannon and min-entropy abso-
lute losses using Poisson distribution with Pois(λ),
varying λ with |T| = 1.

Figure 8.7: Min-entropy analysis.

metric used to represent information disclosure is less impactful.

8.3 Mixed Distribution Parameters

Up to this point, we have assumed that all participants’ inputs are sampled from identically dis-

tributed random variables. However, we can relax this assumption and investigate if/how the

information disclosure changes if parties’ inputs are non-identically distributed. For example,

employee salaries may differ slightly from company to company, while still following the same

distribution. We can model this by adjusting the statistical parameters of individual participants.

We begin by formalizing the notion of participant “groups”. Define G as a finite set of statistical

distributions, from which participants’ inputs can be sourced. For example, if we have two groups

B and C of normally distributed inputs parameterized byN (0, σ2
B) andN (0, σ2

C) (where σ2
B ̸= σ2

C),

respectively, then G = {B,C}. This formulation poses two interesting directions for introducing

participant group identities, i.e., correspondence of a participant to one of the distribution groups,

109

into our analysis:

• Group identities of individual participants are known. The first setting we consider is that

the identity, i.e., the group, of each individual participant is known. In practice, this is real-

ized by multiple entities with inputs modeled by different statistical distributions contribut-

ing to a computation, where the number of inputs submitted by each is publicly available.

• Group identities of individual participants are unknown. Conversely, we have the sce-

nario where we have knowledge of the possible distribution groups participants can belong

to with anticipated likelihoods, but the group identity of an individual party is not known.

This is objectively more general than the first category but requires knowledge in the form

of the probabilities of an arbitrary participant belonging to each group.

It is therefore of interest to revisit our prior conclusions under the known and unknown group

identity generalizations (denoted by Cases 1 and 2, respectively) since both formulations bear

operational significance.

Entropy loss as a result of computation participation. The first conclusion we revisit is Claim 1

since it is integral to our analysis as a whole. The claim states that the information disclosure

from the average function output is independent of the attackers’ inputs. Based on this result, our

subsequent analysis enabled us to derive expressions for awae.

In the current generalized setting, Claim 1 remains true for both Cases 1 and 2, since the deriva-

tion in the proof of Claim 1 itself remains unchanged. However, we must adjust Equation 8.3 such

that participant group membership is captured by our entropy measure. We recall our definitions

110

of entropy remaining after participation and the absolute entropy loss:

H
(

X⃗T | XT + XS

)
= H

(
X⃗T

)
+ H (XS)− H (XT + XS) (8.4)

H(X⃗T)− H(X⃗T | XT + XS) = H (XT + XS)− H (XS) (8.5)

Accounting for group identities, we introduce the participant identity random variable IDPi supported

by G. This corresponds to the group identity of participant Pi, and we denote idPi ∈ G as the value

IDPi takes. We similarly denote I⃗DP = (IDP1 , . . . , IDPm) as a multidimensional random variable,

with i⃗dP as the vector of individual values of the same size.

At this point, our analysis splits into two directions based on the knowledge of individual

group identities. Case 1: If participant group identities are available (i.e., I⃗DT = i⃗dT and I⃗DS = i⃗dS),

Equation 8.4 becomes:

H
(

X⃗T | XT + XS, I⃗DT = i⃗dT, I⃗DS = i⃗dS

)
=H

(
X⃗T | I⃗DT = i⃗dT

)
+ H

(
XS | I⃗DS = i⃗dS

)

− H
(

XT + XS | I⃗DT = i⃗dT, I⃗DS = i⃗dS

)
.

(8.6)

Since we have exact knowledge of each participant’s identity, we can explicitly partition the input

random variables accordingly. Therefore, all the above quantities are computable with minimal

deviation from our original analysis. For instance, if we recall our earlier example with two par-

ticipant groups B and C, the term H
(

XS | I⃗DS = i⃗dS

)
can be computed as:

H
(

XS | I⃗DS = i⃗dS

)
= H

(
∑
j∈S

XSj | I⃗DS = i⃗dS

)

= H

 ∑

j∈S : idSj=B

XSj + ∑
j∈S : idSj=C

XSj

 | I⃗DS = i⃗dS

 .

111

The absolute entropy loss directly follows from Equation 8.6, and is computed as:

H
(

X⃗T | I⃗DT = i⃗dT

)
− H

(
X⃗T | XT + XS, I⃗DT = i⃗dT, I⃗DS = i⃗dS

)

= H(XT + XS | I⃗DT = i⃗dT, I⃗DS = i⃗dS)− H(XS | I⃗DS = i⃗dS).

(8.7)

Under this generalization, the group to which a target belongs impacts how much information is

disclosed from the computation, i.e., the disclosure can fall within a range based on the values i⃗dT

can take. We determine the worst-case information disclosure by iterating over all possible target

identities and taking the maximum:

max
i⃗dT

(
H(XT + XS | I⃗DT = i⃗dT, I⃗DS = i⃗dS)− H(XS | I⃗DS = i⃗dS)

)
.

We can further refine our earlier notation established in Chapter 7 to encompass participant group

identities (applicable to both targets and spectators). Let PG ⊂ P be the set of participants belong-

ing to group G ∈ G. The sum of random variables modeling participant inputs is given as

XS = ∑
G∈G

∑
i∈PG

XPi = ∑
G∈G

XPG ,

where XPG = ∑i∈PG XPi .

Case 2: When the group identities of individual inputs are not known and only the probability

of belonging to a given group is given, the procedure for evaluating the information disclosure

changes. The probability mass and density functions, respectively, for the participant inputs ran-

112

dom variables are now:

Pr
(

X⃗P = x⃗P

)
= ∑

i⃗dP

Pr
(
I⃗DP = i⃗dP

)
Pr
(

X⃗P = x⃗P | I⃗DP = i⃗dP

)

f (x⃗P) = ∑
i⃗dP

Pr
(
I⃗DP = i⃗dP

)
f
(

x⃗P | I⃗DP = i⃗dP

)
.

For a participant set P, there are |G||P| possible identity configurations, such that the number of

terms in the summation is exponential in the number of participants and/or size of the group

identity set. The Shannon and differential entropies are now computed as:

H(X⃗P) = − ∑
x⃗P∈P

∑

i⃗dP

Pr
(
I⃗DP = i⃗dP

)
Pr
(

X⃗P = x⃗P|I⃗DP = i⃗dP

)

· log

∑

i⃗dP

Pr
(
I⃗DP = i⃗dP

)
Pr
(

X⃗P = x⃗P|I⃗DP = i⃗dP

)

 ,

(8.8)

h(X⃗P) = −
∫

P

∑

i⃗dP

Pr
(
I⃗DP = i⃗dP

)
f
(

x⃗P | I⃗DP = i⃗dP

)

· log

∑

i⃗dP

Pr
(
I⃗DP = i⃗dP

)
f
(

x⃗P | I⃗DP = i⃗dP

)

 dx⃗P.

(8.9)

The fundamental difference between the entropy calculation under this generalization and the

analysis conducted in Sections 8.1.1 and 8.1.2 is that the entropy of these random variables is no longer

exactly modeled by the input distribution itself (e.g., Poisson, uniform, Gaussian, log-normal). Fur-

thermore, for continuous input distributions, our previous approach of leveraging closed-form

expressions is no longer applicable when group identities are unknown – the information disclo-

sure must be computed numerically, rather than exactly.

Parameter independence of the absolute loss for normally distributed inputs. The next con-

113

clusion we revisit is Claim 2, which previously stated that for normally distributed inputs, the

absolute entropy loss depends only on the number of targets and spectators present in the com-

putation. This conclusion changes in the generalized setting when the participants’ inputs are no

longer identically distributed, as we demonstrate below.

Case 1: Let σ2
G be the standard deviation of the participants’ inputs that belong to group G. Using

the definitions from Section 8.1.2 for the entropy sums of identically distributed normal random

variables, the entropy of XPG is h(XPG) = 1
2 log

(
2πeσ2

G |PG|
)
. We similarly derive the following

expressions needed to compute the absolute entropy loss (given in Equation 8.7):

h(XT + XS | I⃗DT = i⃗dT, I⃗DS = i⃗dS) =
1
2

log 2πe

(
∑
G∈G

(
σ2
G· |TG|+ σ2

G· |SG|
)
)

h(XS | I⃗DS = i⃗dS) =
1
2

log 2πe

(
∑
G∈G

(
σ2
G· |SG|

)
)

.

Plugging these equations into our expression for the absolute entropy loss and simplifying yields:

h(XT + XS | I⃗DT = i⃗dT, I⃗DS = i⃗dS)− h(XS | I⃗DS = i⃗dS) =
1
2

log

(
∑G∈G

(
σ2
G· |TG|

)

∑G∈G

(
σ2
G· |SG|

) + 1

)
.

Unlike the analysis in the proof of Claim 2, the standard deviations do not cancel. However, we

can reformulate our interpretation of the sums of standard deviations when accounting for group

identities. Let us define σ2
B ∈ R>0 as the “base standard deviation” for all input random variables.

Then, for all G ∈ G, there exists some δG > 0 such that σ2
G = δG·σ2

B. Substituting into the above

expression yields:

h(XT + XS | I⃗DT = i⃗dT, I⃗DS = i⃗dS)− h(XS | I⃗DS = i⃗dS) =
1
2

log

(
∑G∈G

(
δG·σ2

B· |TG|
)

∑G∈G

(
δG·σ2

B· |SG|
) + 1

)

114

2 5 8 11 14 17 20 23 26 29 32
Total No. spectators (|SB| + |SC| + |SD|)

0.0

0.1

0.2

0.3

0.4
E

nt
ro

py
(b

it
s)

σ2
B = 4

σ2
B = 8

σ2
B = 16

B, C, D ∼ N (0, σ2
B)

idT = B

idT = C

idT = D

(a) Absolute entropy loss h(X⃗T)− h(X⃗T | XT + XS)

2 5 8 11 14 17 20 23 26 29 32
Total No. spectators (|SB| + |SC| + |SD|)

0

2

4

6

8

10

12

P
er

ce
nt

ch
an

ge

σ2
B = 4

B, C, D ∼ N (0, σ2
B)

idT = B

idT = C

idT = D

(b) Relative entropy loss h(X⃗T)−h(X⃗T |XT+XS)

h(X⃗T)

Figure 8.8: Mixed distribution analysis under Case 1. The red dashed curves correspond to
our baseline where all groups are identically distributed (B,C,D ∼ N (0, σ2

B)), while the re-
maining curves indicate the target belonging to distinct groups distributed by B ∼ N (0, σ2

B),
C ∼ N (0, 1.12σ2

B), and D ∼ N (0, 0.92σ2
B). The shaded regions illustrate the full space for the

absolute entropy loss, generated from every possible spectator and group configuration.

=
1
2

log
(

∑G∈G (δG· |TG|)
∑G∈G (δG· |SG|)

+ 1
)

.

The key conclusion from the above equation is that the absolute entropy loss is not directly affected

by the statistical parameter σ2
G, but rather the relationship each σ2

G has (via the scaling factor δID) to

the base standard deviation σ2
B.

To demonstrate this phenomenon, we compute the absolute entropy loss when the target

belongs to one of three possible groups differing by ±10% in their average salary. Concretely,

we have B, C, or D with deviations σ2
B, 1.12σ2

B, and 0.92σ2
B, respectively. The target is inter-

preted to “move” from group to group such that a consistent group size is maintained, e.g.,

|SB ∪ T| = |SC| = |SD| when the target is in group B. This constitutes the curves displayed in

Figure 8.8. To further illustrate the best- and worst-case information disclosure, we compute the

115

absolute entropy loss for all possible spectator-group configurations and compose the shaded re-

gion from the maximums and minimums. Figure 8.8a reflects our observation that regardless of

the base standard deviation σ2
B (4, 8, or 16), the curves fall on top of each other. Moreover, the

absolute loss when idT = B is equivalent to our original computation when all groups are iden-

tically distributed. We also reproduce our relative loss experiment using the same ±10% salary

configuration for σ2
B = 4 in Figure 8.8b. Achieving maximum relative losses of 5% and 1% now

requires at least 6 and 27 spectators, respectively.

Case 2: When group identities of individual inputs are unknown, we refer to the definition of abso-

lute entropy loss (Equation 8.5) alongside the expressions for the differential entropy we derived

in Equation 8.9 for the required quantities and obtain:

h(XT + XS)

= −
∫

T ∪S

 ∑

i⃗dT ,i⃗dS

Pr
(
I⃗DT = i⃗dT, I⃗DS = i⃗dS

)
f
(

xT + xS | I⃗DT = i⃗dT, I⃗DS = i⃗dS

)

· log

(
∑

i⃗dT ,i⃗dS

Pr
(
I⃗DT = i⃗dT, I⃗DS = i⃗dS

)

· f
(

xT + xS | I⃗DT = i⃗dT, I⃗DS = i⃗dS

))
d(xT + xS)

h(XS) = −
∫

S

∑

i⃗dS

Pr
(
I⃗DS = i⃗dS

)
f
(

xS | I⃗DS = i⃗dS

)

· log

∑

i⃗dS

Pr
(
I⃗DS = i⃗dS

)
f
(

xS | I⃗DS = i⃗dS

)

 dxS

These values need to be computed numerically since, as previously stated, the random variables

that represent the target and spectators’ inputs no longer exactly translate to the input distribution

itself. Utilizing the same group configuration as specified above under Case 1 and assuming the

116

probability for each identity is equally likely (for convenience), we compute the absolute loss in

Figure 8.9 alongside our baseline where every participant belongs to a single group. The most

interesting observation is that all the curves overlap each other, a trend originally observed in

Sections 8.1.1 and 8.1.2. We note that this is likely a consequence of the experimental configuration

itself (groups’ salaries differ by ±10%, identity probabilities are equally likely).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Total No. spectators

0.0

0.1

0.2

0.3

0.4

0.5

E
nt

ro
py

(b
it

s)

σ2
B = 4

σ2
B = 8

σ2
B = 16

B, C, D ∼ N (0, σ2
B)

B ∼ N (0, σ2
B)

C ∼ N (0, 1.12σ2
B)

D ∼ N (0, 0.92σ2
B)

B, C, D ∼ N (0, σ2
B)

B ∼ N (0, σ2
B)

C ∼ N (0, 1.12σ2
B)

D ∼ N (0, 0.92σ2
B)

Figure 8.9: Mixed distribution analysis under Case 2, where the probability of an arbitrary partici-
pant belonging to any specific group is equally likely, i.e., Pr(IDP = B) = Pr(IDP = C) = Pr(IDP =
D) = 1/3.

117

Chapter 9
Average Salary: Multiple Executions

A natural generalization of the results of the prior chapter is to consider executing the average

salary computation more than once. For example, after running the Boston gender pay gap study

once, the same computation was executed the following year with an extended set of participants.

In this case, if the time interval between the executions is small enough such that the inputs do

not change between the executions or change minimally, one would expect that repeated partic-

ipations would lead to additional information disclosure compared to a single execution. Thus,

we analyze in this chapter the case of two or more executions and demonstrate their impact on

the participants.

9.1 Two Executions

We first consider the case of two evaluations of the average salary computation. We consider

both cases when a target contributes its input to both executions and when the target participates

only in one of the executions and the other takes place without the target, but on related inputs.

Both cases result in additional information disclosure compared to a single execution, which we

118

quantify in this chapter.

We partition the set of spectators S into the following subsets:

• spectators present only in the first execution S1 ⊂ S,

• spectators present only in the second execution S2 ⊆ S \ S1,

• and spectators present in both executions S12 = S \ (S1 ∪ S2).

A person participating more than once (target or spectator) enters the same input into both execu-

tions.

When the target participates in both executions, we have:

O1 = ∑
i

XTi + ∑
i∈S12

Xi + ∑
i∈S1

Xi = XT + XS12 + XS1

O2 = ∑
i

XTi + ∑
i∈S12

Xi + ∑
i∈S2

Xi = XT + XS12 + XS2 .

The random variables O1 and O2 are not independent, as they both are comprised of XT and XS12 .

We therefore want to compute the conditional entropy (using differential entropy notation):

h(X⃗T | O1, O2) = h(X⃗T, O1, O2)− h(O1, O2). (9.1)

Claim 3

The above conditional entropy can be expressed as

h(X⃗T |O1, O2) = h(X⃗T) + h(XS12 + XS1 , XS12 + XS2)− h(O1, O2). (9.2)

Proof. Simplifying the first term of Equation 9.1 using the chain rule of entropy h(X, Y) = h(X |

119

Y) + h(Y) [57], we obtain:

h(X⃗T, O1, O2) = h(X⃗T, XT + XS12 + XS1 , XT + XS12 + XS2)

= h(X⃗T) + h(XT + XS12 + XS1 | X⃗T)

+ h(XT + XS12 + XS2 | XT + XS12 + XS1 , X⃗T).

Using the fact that all participants’ inputs are independent, we have:

h(X⃗T, O1, O2) = h(X⃗T) + h(XS12 + XS1) + h(XT + XS12 + XS2 , XT + XS12 + XS1 | X⃗T)

− h(XT + XS12 + XS1 | X⃗T)

= h(X⃗T) + h(XS12 + XS1) + h(XS12 + XS2 , XS12 + XS1)− h(XS12 + XS1)

= h(X⃗T) + h(XS12 + XS1 , XS12 + XS2).

The second term of Equation 9.1 can be rewritten as:

h(O1, O2) = h(XT + XS12 + XS1 , XT + XS12 + XS2)

= h(XT + XS12 + XS1) + h(XT + XS12 + XS2 | XT + XS12 + XS1),

but cannot be simplified further. Therefore, the final expression of the conditional entropy is

h(X⃗T|O1, O2) = h(X⃗T) + h(XS12 + XS1 , XS12 + XS2)− h(O1, O2).

In the special case when no spectators participate in both executions (i.e., S12 = ∅), the middle

term simplifies to h(XS1) + h(XS2).

120

When the target participates only in one of the experiments, we define executions O′1 and O′2,

which are the same as O1 and O2, respectively, except that the target’s inputs are not included. For

instance, O′1 = XS12 + XS1 . The relevant entropies in that case are h(X⃗T|O′1, O2) and h(X⃗T|O1, O′2).

The above requires us to introduce the definition of joint entropy of correlated random vari-

ables. Now, the normal distribution stands out among those considered in Section 8.1 as a suitable

candidate for our analysis. The generalized multivariate normal distribution is well-studied and

has a closed-form differential entropy, which we discuss next.

9.1.1 Bivariate Normal Distributions

Evaluating Equation 9.2 requires defining the differential entropy of a multivariate normal ran-

dom variable. We then derive the necessary core parameters for our distributions and use them to

compute the conditional entropy.

Let Xi ∼ N (µi, σ2
i) be a single normal random variable as defined in Chapter 7. We define

X⃗ = (X1, . . . , Xk)
T to be a general multivariate normal distribution of a k-dimensional random

vector, with X⃗ ∼ N (µ, Σ). Here, µ ∈ Rk is the mean vector specified as

µ = E[X⃗] = (E [X1] , E [X2] , . . . , E [Xk])
T = (µ1, µ2, . . . , µk)

T ,

and Σ ∈ Rk×k is the k× k covariance matrix with each element defined as Σi,j = E
[
(Xi − µi)(Xj − µj)

]
=

Cov
[
Xi, Xj

]
. The differential entropy of the multivariate normal distribution X⃗ is given by

h(X⃗) =
1
2

log
(
(2πe)k det Σ

)
,

[57, Chapter 8.4] where det Σ is the determinant of the covariance matrix. The next step is to char-

121

acterize our multivariate distributions and determine their covariance matrices. We also derive

their mean vectors which are used for intermediate results.

To compute the second and third terms of Equation 9.2, we formalize the bivariate distribu-

tions S⃗ = (XS12 + XS1 , XS12 + XS2)
T and O⃗ = (O1, O2)

T. We denote µP = ∑i µPi and σ2
P = ∑i σ2

Pi
as

the sum of the means and standard deviations, respectively, of all participants within a group P.

Note that the mean is absent from the formula for the differential entropy, and therefore we can

safely assume all µi = 0. Starting with O⃗, we invoke the linearity of the expectation for the mean

vector:

µO⃗ =

E [O1]

E [O2]

 =

E [XT + XS12 + XS1]

E [XT + XS12 + XS2]

 =

µT + µS12 + µS1

µT + µS12 + µS2

 =

µ1

µ2

 .

For the covariance matrix, using the properties Cov [X, X] = Var [X] = σ2
X and Cov [X, Y] =

Cov [Y, X] yields

ΣO⃗ =

Cov [O1, O1] Cov [O1, O2]

Cov [O2, O1] Cov [O2, O2]

 =

Var [O1] Cov [O1, O2]

Cov [O1, O2] Var [O2]

=

σ2
T + σ2

S12
+ σ2

S1
Cov [O1, O2]

Cov [O1, O2] σ2
T + σ2

S12
+ σ2

S2

 =

σ2
1 Cov[O1, O2]

Cov [O1, O2] σ2
2

 .

The expression for Cov [O1, O2] can be stated as follows:

Claim 4

Cov [O1, O2] = σ2
T + σ2

S12
if S12 is non-empty, and Cov [O1, O2] = σ2

T otherwise.

122

Proof.

Cov [O1, O2] = E [(O1 − µ1)(O2 − µ2)] = E [O1O2 − µ2O1 − µ1O2 + µ1µ2]

= E [(XT + XS12 + XS1) (XT + XS12 + XS2)]E [µ2 (XT + XS12 + XS1)]

−E [µ1 (XT + XS12 + XS2)] + E [µ1µ2]

= E
[
X2

T
]
+ E

[
X2

S12

]
+ 2E [XTXS12] + E [XTXS1] + E [XTXS2]

+ E [XS12 XS1] + E [XS12 XS2] + E [XS1 XS2]

− µ2(

µ1︷ ︸︸ ︷
E [XT] + E [XS12] + E [XS1])− µ1(E [XT] + E [XS12] + E [XS2]︸ ︷︷ ︸

µ2

)

+ µ1µ2

Exploiting the definition of variance E
[
X2] = σ2

X +µ2
X and fundamental properties of expectation:

Cov [O1, O2] = σ2
T + σ2

S12
− µ1µ2

+ µ2
T + µ2

S12
+ 2µTµS12 + µTµS1 + µTµS2 + µS12 µS1 + µS12 µS2 + µS1 µS2︸ ︷︷ ︸

=µ1µ2

= σ2
T + σ2

S12
.

Clearly, if S12 = ∅, the above result simplifies to Cov [O1, O2] = σ2
T. This result is intuitive since

the covariance measures the strength of correlation between two random variables, and O1 and

O2 are both comprised of XT and XS12 .

123

The final parameters of the bivariate distribution O⃗ are

µO⃗ =

µ1

µ2

 , ΣO⃗ =

σ2
1 σ2

T + σ2
S12

σ2
T + σ2

S12
σ2

2

 .

Repeating this procedure for the spectator joint distribution S⃗ yields a similar set of parameters:

µS⃗ =

µS12 + µS1

µS12 + µS2

 , ΣS⃗ =

σ2
S12

+ σ2
S1

σ2
S12

σ2
S12

σ2
S12

+ σ2
S2

 .

Equipped with expressions for ΣO⃗ and ΣS⃗, we are prepared to begin our experimental analysis of

h(XT | O1, O2).

9.1.2 Experimental Evaluation

The above specification allows us to experimentally evaluate the target’s entropy loss when inputs

are normally distributed. We use normal distribution N (0, 4) to reasonably approximate the log-

normal distribution with real data. Once again, |T| = 1 for concreteness and we let |S1| = |S2| in

all experiments, i.e., the number of spectators is the same in both executions.

It is informative to analyze information loss as the fraction of shared spectators changes and

we do so for three different computation sizes. To be as close to the setup that guarantees 1%–5%

entropy loss for the log-normal distribution (5–24 spectators), we choose to execute our experi-

ments with 6, 10, and 24 spectators (where having an even number is beneficial for illustration

purposes). This corresponds to the number of non-adversarial participants when the target is ab-

sent and the number of non-adversarial participants is one higher when the target is participating.

We display the following information in Figure 9.1:

124

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of shared spectators

2.75

2.80

2.85

2.90

2.95

3.00

3.05
E

n
tr

op
y

(b
it

s)

(a) s = 6 spectators per execution.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of shared spectators

2.75

2.80

2.85

2.90

2.95

3.00

3.05

E
n
tr

op
y

(b
it

s)

(b) s = 10 spectators per execution.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of shared spectators

2.75

2.80

2.85

2.90

2.95

3.00

3.05

E
n
tr

op
y

(b
it

s)

(c) s = 24 spectators per execution.

Initial entropy h(~XT)

Entropy after participating once h(~XT | O1)

Entropy after participating twice h(~XT | O1, O2)

Entropy after participating in the first only

h(~XT | O1, O
′
2)

Entropy after participating in the second only

h(~XT | O′1, O2) (equivalent to h(~XT | O1, O
′
2))

Figure 9.1: Target information loss after participating in one or two computations. Omitted: if
the target participates in one experiment and all the shared spectators are reused, then h(XT |
O1, O′2) = 0.

• the target’s initial entropy h(X⃗T),

• the target’s entropy after a single execution h(X⃗T | O1),

• the target’s entropy after participating twice h(X⃗T|O1, O2),

125

• the target’s entropy after participating in one of the two executions, i.e., h(X⃗T | O1, O′2) and

h(X⃗T | O′1, O2)

and plot the values as a function of the fractional overlap between two executions for a given

number of spectators.

Naturally, the value of h(X⃗T | O1) remains constant when the number of participants is fixed.

We observe that when participating twice, h(X⃗T | O1, O2) converges to h(X⃗T | O1) as the fraction

of shared spectators increases. This is expected because at 100% overlap, we are functionally

calculating h(X⃗T | O1, O1) = h(X⃗T | O1). We formalize this into the claim:

Claim 5

If the target participates in both evaluations and 100% of the spectators are reused, h(X⃗T | O1, O2) =

h(X⃗T | O1).

Proof. We begin by analyzing the absolute loss between the first and second evaluations when the

target participates twice, namely:

h(X⃗T | O1)− h(X⃗T | O1, O2).

Assume all participants’ inputs are normally distributed (Xi ∼ N (0, σ2)). Denote p = |P| as the

size of an arbitrary group P (e.g., s12 = |S12|), such that XP ∼ N (0, pσ2). Simplifying the absolute

loss between the first and second evaluations, we obtain:

h(X⃗T | O1)− h(X⃗T | O1, O2) = h(X⃗T) + h(XS12 + XS1)− h(XT + XS12 + XS1)

−
(

h(X⃗T) + h(XS12 + XS1 , XS12 + XS2)− h(O1, O2)
)

126

= h(XS12 + XS1)− h(XT + XS12 + XS1) + h(O1, O2)

− h(XS12 + XS1 , XS12 + XS2).

Using the definitions from Section 9.1.1, we calculate the remaining terms as

h(XS12 + XS1) + h(XT + XS12 + XS1) =
1
2

log
(

s12 + s1

t + s12 + s1

)

h(O1, O2) =
1
2

log
(
(2πe)2((t + s12)(s1 + s2) + s1s2)σ

2)

h(XS12 + XS1 , XS12 + XS2) =
1
2

log
(
(2πe)2(s12(s1 + s2) + s1s2)σ

2)

h(O1, O2)− h(XS12 + XS1 , XS12 + XS2) =
1
2

log
(
(t + s12)(s1 + s2) + s1s2

s12(s1 + s2) + s1s2

)

Therefore, the absolute entropy loss between the first and second evaluations is

h(X⃗T | O1)− h(X⃗T | O1, O2) =

(
1
2

log
(

s12 + s1

t + s12 + s1

))
+

1
2

log
(
(t + s12)(s1 + s2) + s1s2

s12(s1 + s2) + s1s2

)

=
1
2

log
((

s12 + s1

t + s12 + s1

)(
t(s1 + s2) + s12(s1 + s2) + s1s2

s12(s1 + s2) + s1s2

))
.

Since we assume s1 = s2, the above expression simplifies to

h(X⃗T | O1)− h(X⃗T | O1, O2) =
1
2

log
((

s12 + s1

t + s12 + s1

)(
2t + 2s0 + s1

2s0 + s1

))
.

This function is monotonically decreasing when the total number of spectators is fixed to s12 + s1,

and we vary the ratio s12
s1
∈ [0, 1], which is consistent with our observation that the absolute loss

will converge to h(X⃗T | O1).

Conversely, increasing the fraction of the overlap has the inverse effect for h(X⃗T | O1, O′2),

127

causing it to trend downward. At 100% overlap, h(X⃗T | O1, O′2) = 0 (point omitted from the

plots). This is a consequence of effectively computing h(X⃗T | O1, XS12):

h(X⃗T|O1, XS12) = h(X⃗T, O1, XS12)−h(O1, XS12)

= h(X⃗T) + h(XS12)− (h(XT + XS12 | XS12) + h(XS12))

=h(X⃗T) + h(XS12)− (h(XT) + h(XS12)) =h(X⃗T)−h(XT).

When |T| = 1, then h(X⃗T) = h(XT), thus reducing the above equation to zero. This informs us

that the output of the second computation O′2 without any unique spectators reveals the target’s

information entirely. We state this observation as follows:

Claim 6

If the target participates in one evaluation and 100% of the spectators are reused, h(X⃗T | O1, O′2) = 0.

Proof. We now examine the absolute entropy loss between the first and second evaluations when

the target participates in only the first evaluation:

h(X⃗T | O1)− h(X⃗T | O1, O′2)

The only difference from the prior calculation arises is replacing h(O1, O2) with h(O1, O′2), which

evaluates to

h(O1, O2) =
1
2

log
(
(2πe)2(t(s12 + s2) + s12(s1 + s2) + s1s2)σ

2) ,

128

such that our final expression is

h(X⃗T | O1)− h(X⃗T | O1, O′2) =
1
2

log
((

s12 + s1

t + s12 + s1

)(
t(s12 + s2) + s12(s1 + s2) + s1s2

s12(s1 + s2) + s1s2

))

=
1
2

log
((

s12 + s1

t + s12 + s1

)(
t(s12 + s1) + s1(2s0 + s1)

s1(2s0 + s1)

))
.

This function blows up to infinity when s1 = s2 = 0, which confirms that the output of the second

computation O′2 without the presence of any unique spectators reveals the target’s information

entirely.

A passive result of both proofs is that all forms of absolute loss are parameter-independent,

which is consistent with Claim 2.

Our next observation pertains to the point of intersection where h(X⃗T | O1, O2) = h(X⃗T |

O1, O′2), which occurs when 50% of the spectators are shared across the computation. This appears

for the special case when the total number of spectators in a single evaluation is even. Concretely,

we compare

h(X⃗T|O1, O2) = h(X⃗T, O1, O2)− h(O1, O2),

h(X⃗T|O1, O′2) = h(X⃗T, O1, O′2)− h(O1, O′2).

(9.3)

It can be shown using the procedure outlined in Section 9.1 that h(X⃗T, O1, O2) = h(X⃗T, O1, O′2).

Therefore, we prove the following:

Claim 7

With normally distributed inputs, the terms h(O1, O2) and h(O1, O′2) are equal when |S12| = |S1|.

Proof. Following the steps used to derive the covariance matrix of O⃗ = (O1, O2), the covariance

129

matrix of O⃗′ = (O1, O′2) is

ΣO⃗′ =

σ2
T + σ2

S12
+ σ2

S1
σ2

S12

σ2
S12

σ2
S12

+ σ2
S2

 .

Recall that the differential entropy of the multivariate normal is h(X⃗) = 1
2 log

(
(2πe)k det Σ

)
. The

sole object of interest is the det Σ term, as the remainder contributes a constant factor. We calculate

det ΣO⃗ = (σ2
T + σ2

S12
+ σ2

S1
)(σ2

T + σ2
S12

+ σ2
S2
)− (σ2

T + σ2
S12

)2

= σ2
T(σ

2
S1
+ σ2

S2
) + σ2

S12
(σ2

S1
+ σ2

S2
) + σ2

S1
σ2

S2
.

Similarly,

det ΣO⃗′ = (σ2
T + σ2

S12
+ σ2

S1
)(σ2

S12
+ σ2

S2
)− σ4

S12

= σ2
T(σ

2
S12

+ σ2
S2
) + σ2

S12
(σ2

S1
+ σ2

S2
) + σ2

S1
σ2

S2
.

Therefore, the equality h(X⃗T | O1, O2) = h(X⃗T | O1, O′2) is satisfiable if and only if σ2
S12

= σ2
S1

,

which occurs when |S12| = |S1|.

As computation designers, we can minimize information disclosure for all participants by tar-

geting a 50% participant overlap between the first and second executions. For the configurations

in Figure 9.1, at 50% overlap, the percentages of information loss from the second evaluation rela-

tive to the first evaluation are comparable for the selected number of spectators s (30.18% for s = 6,

31.3% for s = 10, and 32.45% for s = 24). This corresponds to the intersection points in Figure 9.1.

As we may be unable to guarantee that exactly 50% of participants overlap between two execu-

130

Number of evaluations
the target participates in

Spectator overlap

40% 50% 60%

One 18.0% 31.3% 52.3%
Two 40.1% 31.3% 23.5%

Table 9.1: Percentage of information loss after two executions relative to a single execution for
s = 10.

tions, we can increase our tolerance for entropy loss by inviting more participants and building a

buffer to accommodate overlaps in a range, e.g., 40–60%. Using data in Figure 9.1, this information

is convenient to gather for s = 10. That is, if we increase the fraction of overlapping spectators,

single-participation targets are most at risk. The converse is true if the overlap decreases – the tar-

get suffers less exposure from participating in one evaluation. Table 9.1 summarizes the results.

This means that performing two executions in the worst case costs a participant entropy loss 1.5

times higher than if only a single computation is executed. As a result, with the target entropy loss

of 5% and 1%, we need to increase the number of spectators from 5 and 24 to 7 and 33, respectively.

We note that our analysis of repeated executions applies only when the inputs of the partici-

pants in the overlapping set of participants do not change. If the executions are distant enough in

time that the participants’ inputs significantly change, they would no longer be treated as repeated

dependent executions.

9.1.3 Additional Two Executions Experiments

We examine the impact of shared spectators’ presence on the target’s information loss. In Fig-

ure 9.2a, we plot:

• the target’s initial entropy h(X⃗T),

• the target’s entropy after a single execution h(X⃗T | O1), and

131

0 5 10 15 20 25
No. spectators per experiment

2.4

2.6

2.8

3.0
E

n
tr

op
y

(b
it

s)

h(~XT)

h(~XT | O1)

h(~XT | O1, O2)

|S12| = 0

|S12| = 1

|S12| = 5

(a) Computing h(XT), h(XT | O1), and h(XT |
O1, O2) for several |S12| sizes.

0 5 10 15 20 25
No. spectators per experiment

0.0

0.2

0.4

0.6

0.8

E
n
tr

op
y

(b
it

s)

h(~XT)− h(~XT | O1)

h(~XT)− h(~XT | O1, O2)

h(~XT | O1)− h(~XT | O1, O2)

|S12| = 0

|S12| = 1

|S12| = 5

(b) Absolute entropy loss.

Figure 9.2: Comparing the relative and absolute entropy losses of participants with normally
distributed inputs. The number of spectators per experiment on the x-axis is computed as
|S12 ∪ S1| = |S12 ∪ S2|, starting with |S1| = |S2| = 1.

• the target’s entropy after two executions h(X⃗T | O1, O2) with a different number of spectators

participating in both executions.

We vary the total number of spectators per experiment |S12 ∪ S1| = |S12∪ S2| on the x-axis, starting

with one unique spectator per experiment |S1| = |S2| = 1. The h(X⃗T | O1, O2) curves correspond

to awae after two executions and start when the number of participants reaches their respective

number of shared spectators |S12| in order to make an accurate comparison. A single curve for

h(X⃗T | O1) suffices since it does not use the notion of shared spectators.

We observe in Figure 9.2a that the larger the number of shared spectators for a given |S0| is, the

less information is revealed about the target. These spectators function as “noise” that protects the

target. The protection offered by a small number of shared spectators becomes less pronounced

as the number of participants grows.

We also compute and present in Figure 9.2b the target’s absolute entropy loss for the following

132

experiments:

• after a single execution h(X⃗T)− h(X⃗T | O1),

• after two executions h(X⃗T)− h(X⃗T | O1, O2), and

• after the second execution h(X⃗T | O1)− h(X⃗T | O1, O2)

using a varying number of shared spectators |S12|. We see that for each fixed number of shared

spectators |S12|, the absolute loss as a result of the first participation (h(X⃗T) − h(X⃗T | O1)) is

greater than the absolute loss of the second participation (h(X⃗T | O1)− h(X⃗T | O1, O2)). With no

shared spectators the curves converge at about 15 participants per execution, while increasing the

number of shared spectators causes the curves to converge at a slower rate.

9.1.4 Mixed Distribution Parameters for Two Executions

In Section 8.3, we examined how our conclusions changed when generalizing our analysis to

non-identically distributed participant inputs. We are similarly interested in how this affects our

two-execution analysis. Recalling the formulation of our two-evaluation setting where specta-

tors are present in the first, second, or both executions, we now consider these spectator subsets

can be further partitioned into sub-subsets based on their group identities. Combining our two-

evaluation notation and that of Section 8.3, we define Pk,G ⊆ P as the set of participants present

in execution(s) k = {1, 2, 12} belonging to group G ∈ G. For example, k = 1 means participation

in the first execution, while k = 12 means participation in both. The sum of these participants’

inputs is

XPk = ∑
G∈G

∑
i∈Pk,G

XPk,i = ∑
G∈G

XPk,G ,

133

where XPG = ∑i∈Pk,G
XPk,i .

Optimal setup for minimizing information disclosure. In Section 9.1.2, we determined that the

point of intersection of the entropies h(X⃗T | O1, O2) and h(X⃗T | O1, O′2) at 50% participant overlap

provides the best level of protection for all types of targets, and moving in either direction (in-

creasing or decreasing the overlap) causes the leakage to increase. We revisit our proof of Claim 7

in our generalized setting to determine whether the equality h(X⃗T | O1, O2) = h(X⃗T | O1, O′2) still

holds when 50% of the spectators are shared across the computation, i.e., |S12| = |S1|.

Considering the expansions of h(X⃗T | O1, O2) and h(X⃗T | O1, O′2) in Equation 9.3, it can be

shown that the terms h(X⃗T, O1, O2) and h(X⃗T, O1, O′2) are equal, leaving h(O1, O2) and h(O1, O′2)

for us to compare. We perform this analysis under Case 1 (participant group identities are known),

since the proof of Claim 7 relies on the existence of the closed-form expression for the differential

entropy.

Computing h(O1, O2) and h(O1, O′2) in the generalized setting requires re-formalizing the co-

variance matrices of the joint random variables O⃗ = (O1, O2) and O⃗′ = (O1, O′2). Performing the

steps outlined in Section 9.1.1 yields the following:

ΣO⃗ =

∑G∈G σ2
G (|TG|+ |S12,G|+ |S1,G|) ∑G∈G σ2

G (|TG|+ |S12,G|)

∑G∈G σ2
G (|TG|+ |S12,G|) ∑G∈G σ2

G (|TG|+ |S12,G|+ |S2,G|)

ΣO⃗′ =

∑G∈G σ2
G (|TG|+ |S12,G|+ |S1,G|) ∑G∈G σ2

G |S12,G|

∑G∈G σ2
G |S12,G| ∑G∈G σ2

G (|S12,G|+ |S2,G|)

 .

Recalling the definition of the differential entropy of a multivariate normal h(X⃗) = 1
2 log((2πe)k det Σ),

134

we compute the determinants of the above matrices as:

det ΣO⃗ =

(
∑
G∈G

σ2
G (|TG|+ |S12,G|+ |S1,G|)

)(
∑
G∈G

σ2
G (|TG|+ |S12,G|+ |S2,G|)

)

−
(

∑
G∈G

σ2
G (|TG|+ |S12,G|)

)2

= ∑
G∈G

σ2
G |TG|

(
∑
G∈G

(
σ2
G (|S1,G|+ |S2,G|)

)
)

+ ∑
G∈G

σ2
G

∣∣∣S(12,G)

∣∣∣
(

∑
G∈G

(
σ2
G (|S1,G|+ |S2,G|)

)
)

+ ∑
G∈G

σ2
G (|S1,G|) ∑

G∈G

σ2
G (|S2,G|)

det ΣO⃗′ =

(
∑
G∈G

σ2
G (|TG|+ |S12,G|+ |S1,G|)

)(
∑
G∈G

σ2
G (|S12,G|+ |S1,G|)

)

−
(

∑
G∈G

σ2
G (|S12,G|)

)2

= ∑
G∈G

σ2
G |TG|

(
∑
G∈G

(
σ2
G (|S12,G|+ |S2,G|)

)
)

+ ∑
G∈G

σ2
G

∣∣∣S(12,G)

∣∣∣
(

∑
G∈G

(
σ2
G (|S1,G|+ |S2,G|)

)
)

+ ∑
G∈G

σ2
G (|S1,G|) ∑

G∈G

σ2
G (|S2,G|)

By inspection, we obtain that the equality h(X⃗T | O1, O2) = h(X⃗T | O1, O′2) is satisfiable if and

only if ∑G∈G

(
σ2
G |S12,G|

)
= ∑G∈G

(
σ2
G |S1,G|

)
. However, this no longer implies that the optimal

configuration is at 50% overlap. For |G| > 1, there can be multiple solutions with respect to the

individual group sizes, statistical parameters, and overlap percentages such that the equality can

be satisfied.

135

9.2 Three Executions and Beyond

The next logical step is to further generalize our analysis to three and any number M executions.

9.2.1 Three Executions

For three evaluations, there are additional possibilities for spectators to overlap between experi-

ments. Specifically, we have:

• spectators who participate in one experiment (S1, S2, S3),

• spectators who participate in two experiments, but not a third (S12, S13, S32), and

• spectators who participate in all three experiments (S123).

Let s be the (fixed) total number of spectators per experiment. For each evaluation, let superscript

(τi) denote a target’s participation flag defined as:

τi =

0 T does not participate in evaluation i

1 T participates in evaluation i

.

We require ∑3
i=1 τi > 0 to signify that the target participates at least once. Therefore, there are

23 − 1 = 7 possible target configurations. For example, (τ1, τ2, τ3) = (1, 0, 1) means the target

participated in the first and third executions. We use this notation to generate expressions for all

configurations of the targets’ participation in evaluations. The random variables for each evalua-

tion are:

O(τ1)
1 = τ1·XT + XS1 + XS12 + XS13 + XS123 = τ1·XT + XŜ1

136

O(τ2)
2 = τ2·XT + XS2 + XS12 + XS23 + XS123 = τ2·XT + XŜ2

O(τ3)
3 = τ3·XT + XS2 + XS23 + XS13 + XS123 = τ3·XT + XŜ3

,

where XŜi
is the sum of all spectator configurations in evaluation i. If we denote p = |P| as the size

of an arbitrary group P such that XP ∼ N (0, pσ2), then covariance matrix for the random vector

O⃗1,2,3 =
(

O(τ1)
1 , O(τ2)

2 , O(τ3)
3

)T
is

ΣO⃗1,2,3
=

Cov
[
O(τ1)

1 , O(τ1)
1

]
Cov

[
O(τ1)

1 , O(τ2)
2

]
Cov

[
O(τ1)

1 , O(τ3)
3

]

Cov
[
O(τ2)

2 , O(τ1)
1

]
Cov

[
O(τ2)

2 , O(τ2)
2

]
Cov

[
O(τ2)

2 , O(τ3)
3

]

Cov
[
O(τ3)

3 , O(τ1)
1

]
Cov

[
O(τ3)

3 , O(τ2)
2

]
Cov

[
O(τ3)

3 , O(τ3)
3

]

=

τ1·t + s1 + s12

+s13 + s123

 τ1τ2·t + s12 + s123 τ1τ3·t + s13 + s123

τ1τ2·t + s12 + s123

τ2·t + s2 + s12

+s23 + s123

 τ2τ3·t + s23 + s123

τ1τ3·t + s13 + s123 τ2τ3·t + s23 + s123

τ3·t + s3 + s23

+s13 + s123

σ2

=

τ1·t + s τ1τ2·t + s12 + s123 τ1τ3·t + s13 + s123

τ1τ2·t + s12 + s123 τ2·t + s τ2τ3·t + s23 + s123

τ1τ3·t + s13 + s123 τ2τ3·t + s23 + s123 τ3·t + s

σ2.

137

The second covariance matrix required is for the random vector S⃗1,2,3 =
(

XŜ1
, XŜ2

, XŜ3

)T
and is

given as

ΣS⃗1,2,3
=

s s12 + s123 s13 + s123

s12 + s123 s s23 + s123

s13 + s123 s23 + s123 s

σ2.

With these matrices, we are capable of computing the conditional entropy h(X⃗T | O(τ1)
1 , O(τ2)

2 , O(τ3)
3).

It will be important later that the above covariance matrices only depend on pairwise spectator

overlaps between the executions (s13 + s123), (s12 + s123), and (s23 + s123), rather than individual

sets s12, s23, s123, etc.

9.2.2 M Executions

We can generalize the prior section’s analysis to obtain the target’s conditional entropy for an

arbitrary number of evaluations. Let M be the total number of evaluations where M ∈ Z>0.

Denote A as the set of integers from 1 to M, such that A = {1, . . . , M}. We can generate the

set of all subsets of spectators that overlap and do not overlap between evaluations using the

power set of A (denoted by P(A)). Specifically S = P(A) \ {∅}, the empty set is excluded as it

corresponds to the target not participating in any computation. The number of spectator subsets

and target participation configurations is |S| = 2M− 1. The output random variable of experiment

i ∈ {1, . . . , M} is therefore

O(τi)
i = τi · XT + ∑

R⊆S :
i∈R

XSR = τi · XT + XŜi
.

138

We can generate elements of the M×M covariance matrix of the random vector O⃗1,...,M = (O(τ1)
1 , . . . ,

O(τM)
M)T using the following expression for i, j ∈ {1, . . . , M}:

Cov
[
O(τi)

i , O
(τj)

j

]
=

τiτj·σ2
T + ∑ R⊆S :

(i,j)∈R
σ2

R if i ̸= j

τi·σ2
T + ∑R⊆S :

i∈R
σ2

R if i = j

.

Similarly, elements of the covariance matrix of the random vector S⃗1,...,M =
(

XŜ1
, . . . , XŜM

)T
can

be generated as follows:

Cov
[

XŜi
, XŜj

]
=

∑ R⊆S :
(i,j)∈R

σ2
R if i ̸= j

∑R⊆S :
i∈R

σ2
R if i = j

.

If the total number of spectators per evaluation is fixed to s, then ∑R⊆S :
i∈R

σ2
R = σ2n.

9.2.3 Experimental Evaluation

Unlike two executions, we can no longer graphically represent conditional entropy as a function

of overlap sizes, as there are several dimensions to consider. Instead, we enumerate all possible

spectator configurations for s = 24 and for each spectator configuration we compute the minimum

of the seven conditional entropies corresponding to valid target configurations τ1, τ2, τ3:

min
τ1,τ2,τ3

h
(

X⃗T | O(τ1)
1 , O(τ2)

2 , O(τ3)
3

)
.

We then determine the maximums across all spectator configurations which correspond to the

optimal choices that minimize the target’s information disclosure.

139

s12 + s123

6 7 8 9 10 11

s
13 +

s
123

s 2
3

+
s 1

2
3

6

7

8

9

10

11

(a)

0 4 8 12 16 20 24
s12 + s123

0

4

8

12

16

20

24

s 1
3

+
s 1

2
3

(b)

s12 + s123
6 7 8 9 10 11

s
13 +

s
123

6
7

8
9

10
11

s
2
3

+
s

1
2
3

6

7

8

9

10

11

(c)

s12 + s123 67891011

s13 + s123

67891011

s 2
3

+
s 1

2
3

6

7

8

9

10

11

(d)

2.9910 2.9915 2.9920 2.9925 2.9930 2.9935 2.9940 2.9945

minτ1,τ2,τ3 h
(
~XT | O(τ1)

1 , O
(τ2)
2 , O

(τ3)
3

)

Figure 9.3: Configurations and values of minimal information disclosure as functions of the pair-
wise spectator overlaps for three evaluations.

We plot the top 500 spectator configurations, which yield 20 unique entropy values (displayed

in the color map), in Figure 9.3 from different viewing angles. The axes correspond to pairwise

overlap sizes, and a point with a fixed overlap, e.g., s12 + s123, corresponds to different individual

sizes of s12 and s123 that add to the same values. Recall that only the sum contributes to the entropy

140

computation.

The maximum conditional entropy (singular white point) occurs when the pairwise overlaps

are 1/3 of s, i.e., when s13 + s123 = s12 + s123 = s23 + s123 = 8. Other top configurations are

located nearby, but do not deviate from the center evenly. In the projection of two of the three

pairwise overlap dimensions (s12 + s123 versus s13 + s123, Figure 9.3b), the top-500 configurations

are concentrated in the 1/3 overlap region. The shape is preserved (and thus the figures are

identical) in the other two projections. It is important to point out that the difference in entropy

between the largest and smallest value plotted is less than 1/100th of a bit.

5 10 15 20 25
n

20

30

40

50

S
p

ec
ta

to
r

ov
er

la
p

(%
)

M = 2

M = 3

M = 4

Figure 9.4: The optimal shared spectators overlap configuration relative to the total number of
participants s for M evaluations.

Having examined optimal configurations for two and three executions, we want to generalize

the findings to any number of experiments and spectators s. In Figure 9.4, we plot the optimal

pairwise overlap percentages as a function of s for 2, 3, and 4 executions. Information leakage is

always the smallest when all pairwise overlaps are equal (i.e., for M = 3, s13 + s123 = s12 + s123 =

s23 + s123). The optimal overlap percentage for M = 2 is upper bounded by 50% and tends towards

50% as s grows. Interestingly, the optimal overlap for both M = 3 and M = 4 trend toward

141

1/3 overlap, while ideal overlaps are generally smaller for M = 4. Analysis of large M, while

potentially interesting, is of limited practical value.

9.3 Recommendations

Our analysis throughout Chapters 8 and 9 allows us to formalize the following recommendations

for computation designers considering the average salary:

• The amount of information disclosure about a target is independent of adversarial inputs. It

was also experimentally shown to be independent of distribution parameters for three differ-

ent distributions and analytically shown for normal distribution. All examined distributions

produce nearly identical entropy loss curves.

• One can reduce the amount of entropy loss to a desired level by increasing the number

of participants. For example, the computation designer can advertise at most 5% or 1%

maximum entropy loss for the average salary application, which will require recruiting 6 or

25, respectively, non-adversarial participants when running only a single evaluation.

• In the presence of repeated computations, information disclosure about inputs continues

for both participants who stay and participants who leave. With two executions, protec-

tion is the largest with 50% overlap in the participants, while both a small overlap and an

overwhelming overlap result in undesirable information disclosure about different types of

participants (i.e., those who stay vs. those who leave).

• With more executions, pairwise overlap sizes determine information disclosure. For 3 and

4 executions, optimal configurations have overlap sizes near 1/3 of the number of partici-

142

pants.

• Information disclosure about participants’ inputs can still be kept at a desirable level by en-

rolling enough participants and restricting the percentage of reused inputs to be in a desired

range. For example, with two executions and following the guidelines of keeping the over-

lap near 50%, the number of non-adversarial input contributors needs to be at least 8 to meet

the target of 5% information loss.

143

Chapter 10
Advanced Statistical Functions

10.1 Candidate Functions

In what follows, we specify the functions we analyze and divide them into two categories: order

statistics and variability measures.

Order Statistics The first class of functions we analyze are categorized as the kth order statistic

of a sample set and corresponds to the kth-smallest value. The first function we consider is the

maximum (nth order statistic), and similarly the minimum (first order statistic). Given a vector x⃗ of

n > 1 inputs, the maximum fmax is defined as

fmax(x⃗) = max
i∈[1,n]

xi.

Naturally, the minimum fmin(x⃗) can be computed by replacing the max operator in the above

equation with minimum.

Next, we consider the median. Given a sequence of n inputs in non-decreasing order, the me-

144

dian is computed as follows:

fmed(x⃗) =

x n+1
2

if n is odd

(xn/2 + xn/2+1)/2 if n is even

.

Note, the original functionality for even numbers of inputs is fundamentally different from the

odd case, where the function computes the average of the two middle values. To rectify this to

ensure the odd and even cases are consistent with one another, we modify the behavior for even

numbers of inputs, such that we return the smaller of the two middle values:

fmed(x⃗) =

x n+1
2

if n is odd

min (xn/2, xn/2+1) if n is even

.

Variability Measures The next class of functions we consider are variability measures. This con-

sists of the standard deviation, an integral component of data analytics used to measure the dis-

persion among a set of samples. It is a natural progression from computing the average since the

mean of a sample dataset is required in order to compute the standard deviation. The (sample)

standard deviation fσ of a vector of inputs x⃗ = (x1, x2, . . . , xn) is defined as

fσ(x⃗) =

√
1
n

n

∑
i=1

(
xi − fµ(x⃗)

)2,

where fµ(x⃗) = 1
n ∑n

i=1 xi is the mean (average). Explicitly accounting for the square root operator

in the calculation is superfluous for several reasons, since it

(a) can be trivially reversed by squaring the function’s output,

145

(b) may unnecessarily introduce noise into the entropy estimation procedure (discussed next),

and

(c) does not affect the computed entropy by virtue of the relationship H(f (X)) ≤ H(X), which

states that the entropy of a random variable X can only decrease when passed through an

arbitrary function.

Instead, we consider the squared standard deviation, i.e., the variance:

fσ2(x⃗) =
1
n

n

∑
i=1

(
xi − fµ(x⃗)

)2 .

It is not uncommon for both the mean and standard deviation to be revealed simultaneously, as

they are fundamental measures the centrality and dispersion. We therefore consider the scenario

when both statistics are released concurrently as a tuple of values and is denoted by f(µ,σ2).

10.2 Entropy Estimators

For a variety of practical applications, it may be required to determine the entropy of a collection

of samples sourced from an arbitrary, unknown distribution, the support of which may not be

known. While previously in Chapters 8 and 9 we could derive closed-form expressions for the en-

tropy when studying the average salary computation, we are not immediately afforded this luxury

for the statistical measures we analyze here. Hence, we turn to alternative approaches for measur-

ing information disclosure. The practice of developing entropy estimators to measure the entropy of

an unknown distribution given a set of sample data is a rich area of study and is deeply embedded

in data-driven fields including neuroscience [156, 159], signal processing [135, 28], RNA sequenc-

146

ing [132], and various machine learning tasks (i.e., feature selection and classification [84, 29],

divergence calculations [137]).

The type of sample data (discrete, continuous, or a mixture) dictates the type of estimator

that can be used. Fortunately, the mixed entropy estimator proposed by Gao et al. [84] is equipped

to handle all possible configurations. Precisely, if a sample set consisting exclusively of discrete

data is supplied, then the algorithm reduces to the plug-in estimator, a popular yet flexible choice

for estimating the entropy of discrete samples over an arbitrary support. The estimator itself is

closely related to the maximum likelihood estimator for approximating the statistical parameters

of an arbitrary distribution. Conversely, if continuous samples are supplied, then the algorithm

reduces to the KSG estimator [109] based on k-nearest neighbor estimates and offers high degrees

of precision in the presence of a limited number of samples, provided the random variable is

“low-dimensional” (lower than 6 dimensions) [85].

The true power of this estimator emerges when the samples are a mixture of both discrete and

continuous data, such as when conducting feature selection to determine which features possess

the strongest relationships with each other. In our analysis, certain functions will solely produce

discrete outputs, regardless of the input distribution. An example would be fmax with a fixed

adversary’s input xA. If all inputs are sourced from a continuous distribution and xA is sufficiently

large, then the support of O would consist solely of xA and thus be a discrete random variable.

The estimator enables us to capture the disclosure in this configuration, such that we can perform

meaningful analysis.

Note, Gao et al.’s estimator is designed to compute the mutual information I(X; Y) of two

random variables X and Y. However, as demonstrated in Chapter 8, the mutual information

between the target’s input and the output of the function, given a fixed attacker’s input, is exactly

147

equal to the absolute entropy loss, namely

I(XT; O | X⃗A = x⃗A) = H (XT)− H
(

XT | O, X⃗A = x⃗A

)
.

We can recover the conditional entropy of the target given the output O and a fixed attacker’s

input x⃗A exactly.

10.3 Experiments

We evaluate our candidate functions with various input distributions below. Our analysis con-

sists of calculating the remaining entropy H (XT | O, XA = xA) for the target after the output is

revealed as a function of the attacker’s input, up to 10 total spectators. We additionally compute

the information disclosure from the output if the attacker was not present, namely H (XT | O).

This quantity corresponds to an external adversary who wants to extract information about the

target, without having the opportunity to participate in the computation. Naturally, this quantity

is a constant for a fixed number of spectators for all distributions.

Our analysis of the information disclosure for the uniform, Poisson, normal, and log-normal

distributions is presented in Figures 10.1 to 10.4. In each figure, we display the disclosure from:

• the maximum function (subfigure a),

• the median function, with odd and even total participants (subfigures b and c, respectively),

• the variance function (subfigure d), and

• the simultaneous variance and mean release function (subfigure e).

For continuous distributions, we compute the information disclosure for different values of xA in

148

intervals of 0.1 and apply the Savitzky-Golay filter to smooth the data.

10.3.1 Maximum

For the maximum, we see in Figures 10.1a, 10.2a, 10.3a and 10.4a, all distributions exhibit con-

sistent behavior. We first observe that the information disclosure is maximized when an attacker

supplies an input “opposite” to the function that is being evaluated. Larger inputs in the attacker’s

domain will lead to lower information disclosure and ultimately converge to the target’s initial en-

tropy H(XT). The intuition behind this is that if an adversary submits a “large” input, then it is

highly likely that the output of the computation will be the attacker’s own input, i.e., o = xA. In

the case of input distributions with positively infinite support, H (XT | O, XA = xA) converge to

H(XT) in the limit of xA → ∞.

For all distributions, if the adversary does not participate in the computation, the quantity

H (XT | O) forms a strict lower bound on H (XT | O, XA = xA). The implication is that the adver-

sary can learn at most the same amount of information that would be learned if they were to not

participate at all. The adversary’s input(s) cannot be crafted in such a way that they can extract

more than a fixed amount of information.

10.3.2 Median

As stated, the median is computed slightly differently based on whether we have an even or

odd number of inputs. For an odd number of participants (Figures 10.1b, 10.2b, 10.3b and 10.4b),

the information disclosure is minimized at the mean of the input distribution, with full symmetry

being displayed for distributions with symmetric masses/densities (uniform and normal). Similar

to the maximum, H (XT | O) forms a strict lower bound on H (XT | O, XA = xA) for all xA’s. The

149

optimal adversarial strategy for the median (odd) is generally to provide the largest possible input

into the computation. Specifically, xA = 0 or xA = n for uniform, xA = +∞ for Poisson, xA = −∞

or xA = ∞ for normal, and xA is near zero or xA = ∞ for log-normal.

For an even number of participants (Figures 10.1c, 10.2c, 10.3c and 10.4c), the local maximums

of H(XT | O, XA = xA) shift slightly towards the right of the mean. More interestingly, the optimal

strategy shifts fully to being biased towards the upper end of the input distribution’s support,

where H (XT | O, XA = xA) can be smaller than H(XT | O) for sufficiently large xA. Under these

circumstances, the adversary is incentivized to participate in the computation.

10.3.3 Variance

The variance computation is the first instance where we observe several new phenomena, in con-

junction with a break in consistency regarding the behavior of discrete and continuous input dis-

tributions.

The first major departure from earlier experiments pertains to the behavior of H (XT | O) for

all input distributions. Contrary to our earlier experiments, the quantity H (XT | O) forms an

upper bound on the information disclosure. This anomaly extends further to the case of |S| = 1,

which leads to less disclosure than experiments with more spectators (in some cases, surpassing

|S| = 3). In other functions, the information disclosure is directly proportional to the number of

spectators (as |S| and H (XT | O), thus less is revealed about the target). The implication here is

that the adversary gains a substantial advantage by supplying inputs into the computation, and

is thus highly incentivized to participate. This is entirely counter-intuitive relative to our prior

results. We leave this as an open problem for future analysis.

Shifting our attention to the distributions themselves, we see for uniform and Poisson (Fig-

150

ures 10.1d and 10.2d) the information disclosure is minimized around the mean. Moving outward

from the mean is more advantageous for the adversary, such that the information disclosure is

maximized at the extrema (xA = 0 or xA = n for uniform, xA = +∞ for Poisson). The normal

and log-normal distributions partially mimic the discrete distributions regarding the local maxima

of H (XT | O, XA = xA) near the mean, with disclosure increasing when moving outward. How-

ever, where we previously observed the largest amount of information disclosure at the extrema,

we now observe absolute minimums between µ ± σ and µ ± 2σ for normal, and between µ − σ

and µ − 2σ for log-normal. Furthermore, inputs near the tails of the distribution lead to higher

H (XT | O, XA = xA). This behavior is intuitive since extreme values in the variance would nega-

tively impact the result of the computation. The adversary would ultimately obfuscate the “true”

result of the computation to the point where they are incapable of learning any information about

the target.

The divergence between discrete and continuous continues when the mean and variance are

released simultaneously. For uniform and Poisson input distributions (Figures 10.1e and 10.2e),

the quantities H (XT | O, XA = xA) and H (XT | O) overlap each other. This directly implies that

when the mean and standard deviation are revealed simultaneously, then the information disclo-

sure is entirely independent of the attacker’s input. This mimics the behavior we observed and

analytically proved in Chapter 8 for the average salary. We note that for Poisson, a slight gap

begins to form between H (XT | O, XA = xA) and H (XT | O) for larger values of xA and |S|. We

attribute this to an inherent accuracy limitation within the estimator.

The equivalence between H (XT | O) and H (XT | O, XA = xA) does not hold for continuous

distributions, where we observe H (XT | O) form a strict lower bound on H (XT | O, XA = xA).

Moreover, a gap exists between the curves for |S| = 1, implying is objectively superior for the

151

adversary to not participate in the computation. For both normal and log-normal, the optimal

strategy for the adversary is to submit inputs centered around the mean.

10.3.4 Relationship between fµ, fσ2 , and f(µ,σ2)

The mean and variance are deeply intertwined statistical measures. As such, we aim to quantify

their relationship, relative to how much information each function discloses about an individual

targeted participant. Let H f be the absolute entropy loss for the target after participating in the

evaluation of f . Our intuition is that the sum of the information disclosed about the target indi-

vidually from the outputs of fµ and fσ2 is at most equivalent to the information disclosure of the

simultaneous release f(µ,σ2). Specifically,

H fµ
+ H f

σ2 ≤ H f(µ,σ2)
.

Note, the sum of H fµ
and H f

σ2 is not considered operationally significant and would not be com-

puted directly, since if the functions were evaluated on the same sample data and the outputs were

both eventually released (suppose after some period of time), then this would still correspond to

the simultaneous release case H f(µ,σ2)
. Nonetheless, it is of practical interest to determine whether

more information is revealed about the target as a byproduct of revealing both outputs together.

In Figure 10.5, we plot the functions for our four distributions for |S| = 2 and |S| = 5. Our

results demonstrate that the information disclosure of simultaneous mean and variance release is

substantially higher than if the computations were performed independently. This is counterin-

tuitive to what we anticipated since this implies that the simultaneous release provides are more

complete picture of the target’s input than the individual functions are capable of. We conjecture

152

that given a sufficiently accurate estimator, one can construct a function that would reveal the

target’s input entirely.

153

0 1 2 3 4 5 6 7
Input xA

2.0

2.2

2.4

2.6

2.8

3.0
En

tr
op

y
(b

it
s)

N−σ N N+σ

H(XT)

(a) Max

0 1 2 3 4 5 6 7
Input xA

2.0

2.2

2.4

2.6

2.8

3.0

En
tr

op
y

(b
it

s)

N−σ N N+σ

H(XT)

(b) Median (odd)

0 1 2 3 4 5 6 7
Input xA

2.4

2.5

2.6

2.7

2.8

2.9

3.0

En
tr

op
y

(b
it

s)

N−σ N N+σ

H(XT)

(c) Median (even)

0 1 2 3 4 5 6 7
Input xA

1.5

2.0

2.5

3.0

En
tr

op
y

(b
it

s)

N−σ N N+σ

H(XT)

(d) Variance

0 1 2 3 4 5 6 7
Input xA

1.0

1.5

2.0

2.5

3.0

En
tr

op
y

(b
it

s)

N−σ N N+σ

H(XT)

(e) Variance and mean release

|S| = 1
|S| = 2
|S| = 3
|S| = 4
|S| = 5

|S| = 6
|S| = 7
|S| = 8
|S| = 9
|S| = 10

H(XT | O, XA = xA)

H(XT | O)

Figure 10.1: Analysis of target’s entropy loss using the uniform distribution with U (0, 7), with
|T| = 1. N = a+b

2 corresponds the mean of a uniform random variable.

154

0 1 2 3 4 5 6 7 8 9 10 11 12
Input xA

2.0

2.2

2.4

2.6

2.8

3.0
En

tr
op

y
(b

it
s)

λ−σλ−2σ λ λ+σ λ+2σ

H(XT)

(a) Max

0 1 2 3 4 5 6 7 8 9 10 11 12
Input xA

2.0

2.2

2.4

2.6

2.8

3.0

En
tr

op
y

(b
it

s)

λ−σλ−2σ λ λ+σ λ+2σ

H(XT)

(b) Median (odd)

0 1 2 3 4 5 6 7 8 9 10 11 12
Input xA

2.4

2.6

2.8

3.0

En
tr

op
y

(b
it

s)

λ−σλ−2σ λ λ+σ λ+2σ

H(XT)

(c) Median (even)

0 1 2 3 4 5 6 7 8 9 10 11 12
Input xA

1.0

1.5

2.0

2.5

3.0

En
tr

op
y

(b
it

s)

λ−σλ−2σ λ λ+σ λ+2σ

H(XT)

(d) Variance

0 1 2 3 4 5 6 7 8 9 10 11 12
Input xA

1.0

1.5

2.0

2.5

3.0

En
tr

op
y

(b
it

s)

λ−σλ−2σ λ λ+σ λ+2σ

H(XT)

(e) Variance and mean release

|S| = 1
|S| = 2
|S| = 3
|S| = 4
|S| = 5

|S| = 6
|S| = 7
|S| = 8
|S| = 9
|S| = 10

H(XT | O, XA = xA)

H(XT | O)

Figure 10.2: Analysis of target’s entropy loss using the Poisson distribution with Pois(4), and with
|T| = 1.

155

−5 0 5
Input xA

−2

−1

0

1

2

3
En

tr
op

y
(b

it
s)

µ−σµ−2σ
µ−3σ

µ µ+σ µ+2σ
µ+3σ

H(XT)

(a) Max

−5 0 5
Input xA

−2

−1

0

1

2

3

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ−3σ

µ µ+σ µ+2σ
µ+3σ

H(XT)

(b) Median (odd)

−5 0 5
Input xA

0

1

2

3

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ−3σ

µ µ+σ µ+2σ
µ+3σ

H(XT)

(c) Median (even)

−5 0 5
Input xA

1.75

2.00

2.25

2.50

2.75

3.00

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ−3σ

µ µ+σ µ+2σ
µ+3σ

H(XT)

(d) Variance

−5 0 5
Input xA

−1

0

1

2

3

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ−3σ

µ µ+σ µ+2σ
µ+3σ

H(XT)

(e) Variance and mean release

|S| = 1
|S| = 2
|S| = 3
|S| = 4
|S| = 5

|S| = 6
|S| = 7
|S| = 8
|S| = 9
|S| = 10

H(XT | O, XA = xA)

H(XT | O)

Figure 10.3: Analysis of target’s entropy loss using the Gaussian distribution with N (0, 4.0), and
with |T| = 1.

156

0 5 10 15
Input xA

−2

−1

0

1

2

3
En

tr
op

y
(b

it
s)

µ−σµ−2σ
µ µ+σ µ+2σ

µ+3σ

H(XT)

(a) Max

0 5 10 15
Input xA

−2

−1

0

1

2

3

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ µ+σ µ+2σ

µ+3σ

H(XT)

(b) Median (odd)

0 5 10 15
Input xA

0

1

2

3

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ µ+σ µ+2σ

µ+3σ

H(XT)

(c) Median (even)

0 5 10 15
Input xA

1.5

2.0

2.5

3.0

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ µ+σ µ+2σ

µ+3σ

H(XT)

(d) Variance

0 5 10 15
Input xA

−1

0

1

2

3

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ µ+σ µ+2σ

µ+3σ

H(XT)

(e) Variance and mean release

|S| = 1
|S| = 2
|S| = 3
|S| = 4
|S| = 5

|S| = 6
|S| = 7
|S| = 8
|S| = 9
|S| = 10

H(XT | O, XA = xA)

H(XT | O)

Figure 10.4: Analysis of target’s entropy loss using the log-normal distribution with logN (1.6702,
0.145542), and with |T| = 1.

157

0 1 2 3 4 5 6 7
Input xA

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
tr

op
y

(b
it

s)

N−σ N N+σ

(a) Uniform U (0, 8)

0 1 2 3 4 5 6 7 8 9 10 11 12
Input xA

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
tr

op
y

(b
it

s)

λ−σλ−2σ λ λ+σ λ+2σ

(b) Poisson Pois(4)

−5 0 5
Input xA

0.4

0.6

0.8

1.0

1.2

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ−3σ

µ µ+σ µ+2σ
µ+3σ

(c) Normal N (0.0, 2.0)

0 5 10 15
Input xA

0.4

0.6

0.8

1.0

1.2

En
tr

op
y

(b
it

s)

µ−σµ−2σ
µ−3σ

µ µ+σ µ+2σ
µ+3σ

(d) Log-normal logN (1.6702, 0.3815)

H fµ
+ H f

σ2 H f
(µ,σ2)

|S| = 2
|S| = 5

Figure 10.5: Absolute entropy loss comparison for various distributions of fµ + fσ2 , and f(µ,σ2) for
|S| = 2 and |S| = 5.

158

Chapter 11
Conclusions

The primary objective of this dissertation was to approach SMC from two distinct, yet intertwined

perspectives. In the traditional sense, we developed a comprehensive suite of protocols that ad-

vance the state-of-the-art of the field and offer compelling advantages over prior solutions. Sub-

sequently, we sought to address previously unasked (and thus, unanswered) broader questions

about secure computation.

We began by studying multi-party threshold secret sharing over a ring in the semi-honest

model with an honest majority with the goal of improving performance compared to field-based

computation. We designed building block operations for n-party replicated secret sharing over

any ring and consequently built upon them to enable general-purpose integer and floating-point

protocols over the ring Z2k . Our implementation results demonstrated that ring-based implemen-

tations of various operations are significantly faster than their field-based equivalents with 3, 5,

and even 7 parties.

Future directions for our framework include investigating how switching to lookup tables for

certain operations (such as division and floating-point rounding) can impact performance over

159

the protocols presented in this dissertation. Furthermore, we can extend this framework to ac-

commodate a weaker security assumption where participants can behave maliciously.

In the second part of this dissertation, we investigated information disclosure associated with

revealing the output of the average salary computation on private inputs. Using the framework

of [12], we extensively analyzed the function and derived several information-theoretic proper-

ties associated with the computation. Inputs were modeled using several common discrete and

continuous distributions, leading to multiple interesting conclusions about their entropy loss. We

expanded the scope to include multiple executions on related inputs and determined the best

configurations that minimize information disclosure. These conclusions led us to provide recom-

mendations for future computation designers.

Our comprehensive treatment of the average salary served as the foundation to extend our

analysis to encompass more advanced descriptive statistics, including maximum, median, and

standard deviation. For these functions, we shifted to data-driven techniques to compute the

entropy and uncovered a number of interesting phenomena. In future works, we aim to solidify

our observations by deriving closed-form expressions of the leakage. Additionally, we intend to

investigate different mitigation strategies when the computational setup cannot be modified.

160

Appendix A
Additional Protocols

This section contains any additional protocols that are not central to our RSS framework, but

useful for the sake of comparison against our proposed solutions.

A.1 Sparse Multiplication

Given inputs [a] and [b̂] where shares of b̂ are sparsely distributed (as defined in Section 4.2.1),

computing the product [a]·[b̂] can be performed using an optimized multiplication algorithm. The

logic follows closely to the original specification in Protocol 1 with the exception of the t parties

without access to the sparse share T̂ (i.e., parties p ∈ T̂) skipping the resharing component of

multiplication since their locally computed product would be zero. These parties only receive

shares from other participants, such that we obtain a final communication complexity of t(t + 1)

ring elements (or tk(t + 1) bits in Z2k) communicated by all parties.

161

Theorem 4

MulSparse is secure according to Definition 1 in the (n, t) setting with n = 2t + 1 in the presence

of secure communication channels, and assuming PRG is a pseudo-random generator and that b̂ is

sparsely shared.

Proof. The security proof of MulSparse is an extension of that of ordinary multiplication (Theo-

rem 1), with the modification that t + 1 parties who are entitled access to b̂T̂ have exact knowledge

of the secret input b̂. This is acceptable since this secret is merely one share of the “true” secret, i.e.,

the input to B2A, and thus does not violate Definition 1. Therefore, we demonstrate that MulSparse

does not disclose any information about the private input a and that parties p ̸∈ T̂ do not learn

any information about b̂.

The simulator SI is constructed equivalently as for Theorem 1: SI sends a random element of

R to a party (or parties) p ∈ I in line 14, or SI receives a computed value from an honest party p

on behalf of p′ in line 16.

To argue that the simulated view is computationally indistinguishable from the real view, we

distinguish between corrupt parties with access to b̂T̂ (i.e., p ∈ T̂), and those without access to

b̂T̂ (i.e., p ̸∈ T̂). In the former case, security follows directly from Theorem 1 since the corrupt

parties in I will collectively hold aT, and keys kT for each T ∈ T , as well as b̂T̂. Together, they

can compute the shares cT, but the remaining share cT∗ (where T∗ = I) is unknown to them. Any

share(s) received by another party p′ ̸∈ I were masked by a fresh pseudo-random element from

GT∗ and is, therefore, pseudo-random and indistinguishable from random by any p ∈ I. Similarly,

if parties p ∈ T̂ = I are corrupted, indistinguishability is trivially maintained since the values

received were protected by pseudo-random element(s) generated PRGs seeded with keys they do

162

not have access to.

For t > 1, we may have a combination of the aforementioned configurations, where p ∈ T̂

and p ̸∈ T̂ constitute the coalition I. Since our setting assumes that participants are semi-honest,

any communicated values between parties in I are information-theoretically protected by pseudo-

random element(s) that the recipient does not have access to, and are thus indistinguishable in the

real and simulated views.

Protocol 25: [c]← MulSparse([a], [b̂])

// define GT = PRG(kT)
// pre-distributed values are [k] and public maps ρ and χ

// shares of [b̂] are sparse, one share T̂ is marked as ‘‘special’’
1 for p ∈ [1, n] in parallel do
2 let Sp = {T ∈ T | p ̸∈ T}
3 if p ̸∈ T̂ then v(p)

χ(p) = ∑T∈T : ρ(T,T̂)=p aT b̂T̂

4 else v(p)
χ(p) = 0

5 for T ∈ Sp do cT = 0
6 for p′ ∈ [1, n] subject to p′ ̸∈ T̂ in order do
7 for T ∈ Sp do
8 if (p′ ̸= p) ∧ (p′ ̸∈ T) ∧ (χ(p′) ̸= T) then
9 cT = cT + GT.next

10 else if (p′ = p) ∧ (χ(p) ̸= T) then
11 z = GT.next
12 cT = cT + z

13 v(p)
χ(p) = v(p)

χ(p) − z

14 if p ̸∈ T̂ then send v(p)
χ(p) to each p′ ̸∈ χ(p) (other than itself)

15 for p′ ∈ [1, n] subject to (p ̸∈ χ(p′)) ∧
(

p′ ̸∈ T̂
)

do
16 receive v(p′)

χ(p′) from p′, set cχ(p′) = cχ(p′) + v(p′)
χ(p′)

17 if p ̸∈ T̂ then cχ(p) = cχ(p) + v(p)
χ(p)

18 return [c]

163

A.2 edaBit Generation for RNTE

Our round-nearest, ties-to-even (RNTE) implementation (Protocol 19) requires a modified version

of our edaTrunc algorithm (Protocol 12). In addition to generating the related random values r

and r̂ (with known bit decompositions), it also produces the random value ˆ̂r = ∑k−1
i=m−2 2iri for

the shorter truncation by m − 2 bits. The logic is identical to the original edaTrunc specification

and carries a slightly higher communication cost from t + 1 parties inputting ˆ̂r and the t addi-

tional carry bits [crδ,m−2] captured by BitAdd. Specifically, the protocol communicates a total of

nt2k(log(k)+1)+(3t+1)ntk(t2−t+1)+4tk(t+1) bits across all parties. The round complexity is

unchanged.

164

Protocol 26: ([r], [r̂], [ˆ̂r][bk−1])← edaTruncRNTE(k, m)

1 for p = 1, . . . , t + 1 in parallel do
2 party p samples r(p)

0 , . . . , r(p)
k−1 ∈ Z2 and computes r(p) = ∑k−1

j=0 r(p)
j 2j, r̂(p) = ∑k−1

j=m r(p)
j 2j,

and ˆ̂r(p) = ∑k−1
j=m−2 r(p)

j 2j

3 simultaneously execute [r(p)]← Inputk(r(p)), [r̂(p)]← Inputk(r̂(p)), [ˆ̂r(p)]← Inputk(ˆ̂r(p)),
and [r(p)

i]1 ← Input1(r
(p)
i) for i = 0, . . . , k− 1, with p being the input owner

4 [r] = ∑t+1
p=1[r

(p)], [r̂] = ∑t+1
p=1[r̂

(p)], [ˆ̂r] = ∑t+1
p=1[

ˆ̂r(p)]

5 s = t + 1
6 for i = 1, . . . , ⌈log(t + 1)⌉ do
7 for j = 1, . . . , ⌊s/2⌋ in parallel do
8 δ = j + s·(i− 1)
9

〈[
r(j)

0

]
1

, . . . ,
[
r(j)

k−1

]
1

〉
, [crδ,m−2]1, [crδ,m]1, [crδ,k−1]1

10 ← BitAdd
(〈[

r(2j−1)
0

]
1

, . . .,
[
r(2j−1)

k−1

]
1

〉
,
〈[

r(2j)
0

]
1

, . . ., [r(2j)
k−1]1

〉)

11 if s mod 2 = 0 then s = s/2
12 else
13

〈[
r(

s+1
2)

0

]

1
, . . . ,

[
r(

s+1
2)

k−1

]

1

〉
=
〈[

r(s)0

]
1

, . . . ,
[
r(s)k−1

]
1

〉

14 s = (s + 1)/2

15 [b0]1 , . . . , [bk−1]1 =
[
r(1)0

]
1

, . . . ,
[
r(1)k−1

]
1

16 [bk−1], ([crδ,m−2] , [crδ,m] , [crδ,k−1])
t
δ=1 ← B2A([bk−1]1,

(
[crδ,m−2]1 , [crδ,m]1 , [crδ,k−1]1

)t
δ=1)

17 [r̂] = [r̂]− [bk−1] · 2k−m−1 + ∑t
δ=1
(
[crδ,m]− [crδ,k−1]2k−m−1)

18
[ˆ̂r
]
=
[ˆ̂r
]
− [bk−1] · 2k−m−3 + ∑t

δ=1
(
[crδ,m−2]− [crδ,k−1]2k−m−3)

19 return ([r], [r̂], [ˆ̂r], [bk−1], [b0]1 , . . . , [bk−1]1)

165

Appendix B
Neural Network Applications

Privacy-preserving machine learning (PPML) has become the de facto benchmark for secure multi-

party frameworks, specifically Neural network (NN) inference. We briefly summarize the theo-

retical foundations of NNs and describe a mechanism for improving the efficiency of secure NN

inference.

A neural network is a series of interconnected layers consisting of neurons. Each neuron has

an associated weight and bias used for computation on some input data and outputs a prediction

based on that data. A NN network layer takes the form y = g(xW + b), where x is the input

vector from the previous layer, W is the weight tensor, b is the bias vector, and g is some acti-

vation function. Sample activation functions are Rectified Linear Unit (ReLU), which on input

x = (x1, . . . , xN) computes y = (y1, . . . , yN) where each yi = max(0, xi), and its variant ReLU6

which computes yi = min(max(0, xi), 6).

166

B.1 Related Works

We distinguish between two-party solutions, where one party holds the model and the other holds

the input on which the model is to be evaluated, and between multi-party (typically, three-party)

solutions. Publications from the first category include MiniONN [119] and Gazelle [100], both of

which studied NN evaluation using SS, homomorphic encryption (HE), and garbled circuits (GC).

Multi-party constructions provide protocols for training and inference across multiple parties.

ABY3 [130] combines techniques based on replicated and binary SS with GCs in the three-party

setting with an honest majority. SecureNN [160] provides three-party protocols for a variety of

NN functions under the same security assumption as ABY3. Their protocols are asymmetric,

where parties have dedicated roles in a computation. This work is improved upon with FALCON

[161] by adding malicious security with an honest majority and combining the techniques from

SecureNN and ABY3.

ASTRA [49] is a three-party framework that uses SS over the ring Z2k under both semi-honest

and malicious security assumptions. Similar to SecureNN, protocols are asymmetric. Abspoel et

al. [11] apply the MP-SPDZ [102] framework for secure outsourced training of decision trees. Their

system operates under the three-party, honest-majority assumption with RSS. Dalskov et al. [60]

were the first to address quantized NN inference using secure multi-party computation. Their

system is built into MP-SPDZ and benchmarked on the MobileNets [92] network architecture.

Keller et al. [104] conducts quantization-based training and inference with three parties and one

semi-honest corruption.

167

B.2 Quantized Neural Networks

To improve the efficiency of NN inference, it is common to employ quantization, which makes

the resulting models suitable for deployment in constrained environments and is a well-studied

field (see, e.g., [87]). We outline the standard quantization approach from [99] and its privacy-

preserving realization from [60] for quantized TFLite models and consequently describe our opti-

mizations.

For a vector x, each real-valued xi is represented as xi = m(x̄i − z), where m ∈ R is the

scale and z and x̄i are 8-bit integers with z being the zero point. Given an input column vector

x = (x1, . . . , xN) and a row vector w = (w1, . . . , wN) of W with quantization parameters (m1, z1)

and (m2, z2), respectively, the dot product of x and w, y = ∑N
i=1 xiwi, is specified with quantization

parameters (m3, z3). Since y ≈ m3· (ȳ− z3), xi ≈ m1· (x̄i − z1), and wi ≈ m2· (w̄i − z2), quantized

ȳ is computed as

ȳ ≈ z3 +
m1m2

m3
·

N

∑
i=1

(x̄i + z1) · (w̄i − z2) = z3 + m·s.

Computing s requires integer-only arithmetic and is guaranteed to fit in 16 + log N bits. The scale

m = m1m2/m3 is a small real number. It can be written as m = 2−em′ with normalized m′ ∈ [0.5, 1)

which informs the value of e and represented as a 32-bit integer m′′, where m′ ≈ 2−31m′′.

Two-dimensional convolutions typically add a quantized bias b̄ once the dot product is com-

puted. This is handled by setting the scale of the bias to m1m2 and the zero-point to 0, such that the

bias can be added to s prior to scaling. The last step of a convolution layer is to apply an activation

function such as ReLU6. In a quantized NN, this functions as a clamping operation that eliminates

values outside of range [0, 255] and uses m3 = 6/255 and z3 = 0. This guarantees correct range

168

while maximizing precision with 8-bit quantized values. Going forward, m3 becomes m1 for the

next layer and thus all intermediate layers share the same m1 = m3 = 6/255. Other activation

functions such as sigmoid would be handled differently, but we only consider clamping-based

functions like [60].

Computing the convolution layer securely requires the model owner to enter private quantiza-

tion parameters into the computation, including all zero points zi, modified scale m′′, and integer

scale adjustment 2M−e−31, where M is an upper bound set to 63. After privately computing the dot

product [s] and adding the bias vector [b̄], the result is multiplied by [m′′] and must be truncated

by a private amount 31+ e. The truncation is accomplished by multiplying the scaled dot product

by
[
2M−n−31] and [m·s] and consequently truncating by M bits. Lastly, after adding [z3] locally,

clamping the result to the interval [0, 255] is performed using two comparisons.

A limitation of [60]’s approach is it requires large scaling factors and consequently a large ring

size of k = 72 for working with real numbers, using M-bit truncation with M = 63. We propose

a modified approach where scales are folded into other aspects of the layer computation and

conduct smaller truncation at the end of each layer, which guarantees a compact representation of

intermediate results.

Let superscript ⟨i⟩ denote the layer number. Starting from layer 0, the entire layer computation

(dot product, scaling, and clamping) can be interpreted as computing 0 ≤ ȳ⟨0⟩ ≤ 255, where

ȳ⟨0⟩ =
m⟨0⟩1 m⟨0⟩2

m⟨0⟩3

((
N

∑
i=1

(
x̄⟨0⟩i − z⟨0⟩1

)
·
(

w̄⟨0⟩i − z⟨0⟩2

))
+ b̄⟨0⟩

)

and z⟨i⟩3 was set to 0, as prescribed by the clamping operation, for all layers except the last one.

169

Note, since m⟨0⟩3 = 6/255, we scale the equation to redefine ȳ⟨0⟩ as

ȳ⟨0⟩ =
N

∑
i=1

(
x̄⟨0⟩i − z⟨0⟩1

)
·
(

w̄⟨0⟩i − z⟨0⟩2

)
+ b̄⟨0⟩,

where 0 ≤ ȳ⟨0⟩ ≤ 6/m⟨0⟩1 m⟨0⟩2 . Now, our clamping operation can use these bounds, with the upper

bound being privately entered by the model owner to avoid division. As before, the output of this

layer becomes the input for the subsequent layer, i.e., x̄⟨i⟩ = ȳ⟨i−1⟩. Our modified incoming vector,

denoted x̂⟨1⟩, is coupled with an additional scaling factor of (255m⟨0⟩1 m⟨0⟩2)/6, such that

x̄⟨1⟩ =
255m⟨0⟩1 m⟨0⟩2

6
x̂⟨1⟩ = δ⟨1⟩ x̂⟨1⟩.

Using x̄⟨1⟩ = δ⟨1⟩ x̂⟨1⟩ gives us

ȳ⟨1⟩ =

(
N

∑
i=1

(
x̂⟨1⟩i − z⟨1⟩1 /δ⟨1⟩

)
·
(

w̄⟨1⟩i − z⟨1⟩2

))
+ b̄⟨1⟩/δ⟨1⟩

with 0 ≤ ȳ⟨1⟩ ≤ 6/
(

δ⟨1⟩m⟨1⟩1 m⟨1⟩2

)
. This expression can be evaluated securely without needing

fixed-point multiplication or large truncation, and all bounds are computed by the model owner

prior to privately entering them in the computation.

Evaluating subsequent layers in this fashion causes the outputs to grow by a factor δ⟨i+1⟩,

which can be computed as

δ⟨i+1⟩ =
255m⟨i⟩1 m⟨i⟩2

6
· δ⟨i⟩

with δ⟨0⟩ = 1. However, we can ensure values remain small by truncating the output ȳ⟨i+1⟩ by ℓ⟨i⟩

170

bits. With the right choice of ℓ⟨i⟩ we are able to maintain the necessary accuracy, and the value of

δ⟨i+1⟩ consequently becomes

δ⟨i+1⟩ = δ⟨i⟩·255m⟨i⟩1 m⟨i⟩2

6·2ℓ⟨i⟩
.

The maximum number of bits we can truncate in a layer must comply with the constraint

δ⟨i⟩ · 255m⟨i⟩1 m⟨i⟩2

6·2ℓ⟨i⟩
≥ 1,

which leads to

ℓ⟨i⟩ ≤
⌊

log2

(
255δ⟨i⟩m⟨i⟩1 m⟨i⟩2 /6

)⌋

Once again, these values are independent of the input data and become a part of the model. We

thus can use TruncPriv outlined in Section 4.2 for truncation by a private amount. The net result is

that we can use a significantly smaller bound M and consequently substantially shorter ring size

k. In practice, the coefficients introduced in our methodology can reasonably be folded into the

scaling factors m themselves.

Other layers such as average pooling can be approximated by substituting the division by

some integer d with truncation by ⌊log d⌋ bits, and softmax can be replaced with argmax when

computing the final prediction. These changes can slightly impact the scaling factors but have

no impact on the accuracy since we leverage basic algebraic properties, without changing the

fundamental calculation itself.

171

Ours MP-SPDZ Z2k , [60]

α 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

ρ

128 3.19 6.47 9.92 13.3 3.19 6.26 9.88 14.0
160 4.94 10.0 15.1 20.7 4.15 8.17 13.6 19.3
192 7.17 14.3 22.0 29.7 5.00 11.0 17.8 26.7
224 9.71 19.9 30.0 40.9 6.57 14.1 23.1 34.9

Table B.1: Performance of 3PC quantized MobileNets prediction in seconds. MP-SPDZ results are
over a ring Z2k .

Ours MP-SPDZ Fp, [60]

α 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

ρ

128 20.4 41.3 63.2 85.5 442 688 992 1343
160 30.1 62.3 113 132 904 1414 2031 2765
192 45.6 93.4 141 194 1398 2182 3156 4269
224 59.2 123 183 263 1919 3005 4324 5877

Table B.2: Performance of 5PC quantized MobileNets prediction in seconds. MP-SPDZ results are
over a field Fp.

B.3 Experimental Results

Benchmarks for quantized NNs were based on the MobileNets [92] architecture, which consists of

28 layers and 1000 output classes. The network alternates between 3× 3 depthwise convolutions

and 1× 1 pointwise convolutions. A resolution multiplier ρ (128–224) scales the dimensions of the

input image, and a width multiplier α (0.25–1.0) scales the size of the input and output channels.

The models we used are hosted on TensorFlow’s online repository [5] and are trained on the Im-

ageNet [66] dataset. We experimentally determined that an upper bound of M = 16 is sufficient

for truncation by a private value since all computed ℓ⟨i⟩s are ≤ 9 for all model configurations.

The performance of quantized MobileNets inference is presented in Tables B.1 and B.2 with

3 and 5 parties, respectively. Our methodology from Section B.2 allowed us to reduce the ring

size from k = 72 to k = 30 or less, potentially reducing the time by a factor of 2. For an accurate

172

comparison, we executed [60]’s implementation on our machines using the same setting. Since a 5-

party honest-majority ring implementation is not available in [60], or more generally in MP-SPDZ,

we use a field-based implementation for the 5-party case from MP-SPDZ. Recall that the ability to

generalize ring-based honest-majority protocols to more participants is our main objective.

The results our 3-party solution achieves are comparable to those in [60] despite ring reduction

and can be explained by the differences in the algorithms. That is, Escudero et al. [80] experimen-

tally determined that [60]’s implementation with ABY3’s local conversion was superior to edaBits

(which we use) only in one setting that we use (semi-honest, honest majority setting over Z2k).

In addition, MP-SPDZ’s optimization for large computation also aids its efficiency. This demon-

strates that our quantized NN solution can aid efficiency. Furthermore, our gain in the 5-party

case is significant, leading to the reduction in time by a factor of 16–32.

173

Bibliography

[1] Inpher. https://inpher.io/.

[2] Nth party. https://www.nthparty.com/.

[3] OpenSSL – Cryptography and SSL/TLS toolkit. https://www.openssl.org/. Version: 1.1.1.

[4] Partisia. https://partisia.com/.

[5] TensorFlow repository. https://tensorflow.org/lite/guide/hosted models. Last accessed:
6/14/22.

[6] IEEE Standard for Floating-Point Arithmetic. Technical Report
10.1109/IEEESTD.2019.8766229, IEEE, 2019.

[7] Replicated secret sharing over a ring. https://github.com/abaccarini/RSS ring ppml, 2022.
Commit: d921581401301c35660e15aaf329f41436699389.

[8] CrypTFlow: An end-to-end system for secure TensorFlow inference. https://github.com/
mpc-msri/EzPC, 2023. Commit: 8b07f73e187c5eb6ab98b0bf09b9bd276cd43949.

[9] Multi-protocol SPDZ (MP-SPDZ). https://github.com/data61/MP-SPDZ, 2023. Commit:
5b50ff21a3bd36c072ace5e3d5a49b5155f088db.

[10] M. Abspoel, A. Dalskov, D. Escudero, and A. Nof. An efficient passive-to-active compiler
for honest-majority MPC over rings. In International Conference on Applied Cryptography and
Network Security (ACNS), pages 122–152, 2021.

[11] M. Abspoel, D. Escudero, and N. Volgushev. Secure training of decision trees with con-
tinuous attributes. Proceedings on Privacy Enhancing Technologies (PoPETs), 2021(1):167–187,
2021.

[12] P. Ah-Fat and M. Huth. Secure multi-party computation: Information flow of outputs and
game theory. In International Conference on Principles of Security and Trust, pages 71–92, 2017.

[13] P. Ah-Fat and M. Huth. Optimal accuracy-privacy trade-off for secure computations. IEEE
Transactions on Information Theory, 65(5):3165–3182, 2019.

174

https://inpher.io/
https://www.nthparty.com/
https://www.openssl.org/
https://partisia.com/
 https://tensorflow.org/lite/guide/hosted_models
https://github.com/abaccarini/RSS_ring_ppml
https://github.com/mpc-msri/EzPC
https://github.com/mpc-msri/EzPC
https://github.com/data61/MP-SPDZ

[14] P. Ah-Fat and M. Huth. Protecting private inputs: Bounded distortion guarantees
with randomised approximations. Proceedings on Privacy Enhancing Technologies (PoPETs),
2020(3):284–303, 2020.

[15] P. Ah-Fat and M. Huth. Two and three-party digital goods auctions: Scalable privacy anal-
ysis. arXiv preprint arXiv:2009.09524, 2020.

[16] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure computation on floating point
numbers. In Network and Distributed System Security Symposium (NDSS), 2013.

[17] M. Alvim, A. Scedrov, and F. Schneider. When not all bits are equal: Worth-based informa-
tion flow. In Principles of Security and Trust (POST), pages 120–139, 2014.

[18] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan, C. Palamidessi, and G. Smith. Ad-
ditive and multiplicative notions of leakage, and their capacities. In IEEE Computer Security
Foundations Symposium (CSF), pages 308–322, 2014.

[19] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. Measuring information
leakage using generalized gain functions. In IEEE Computer Security Foundations Symposium
(CSF), pages 265–279, 2012.

[20] T. Araki, A. Barak, J. Furukawa, M. Keller, K. Ohara, and H. Tsuchida. How to choose
suitable secure multiparty computation using generalized SPDZ. In ACM Conference on
Computer and Communications Security (CCS), pages 2198–2200, 2018.

[21] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-honest
secure three-party computation with an honest majority. In ACM Conference on Computer
and Communications Security (CCS), pages 805–817, 2016.

[22] A. Baccarini, M. Blanton, and C. Yuan. Multi-party replicated secret sharing over a ring
with applications to privacy-preserving machine learning. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2023(1):608–626, 2023.

[23] R. Barakat. Sums of independent lognormally distributed random variables. Journal of the
Optical Society of America, 66(3):211–216, 1976.

[24] G. Barthe and B. Kopf. Information-theoretic bounds for differentially private mechanisms.
In IEEE Computer Security Foundations Symposium (CSF), pages 191–204, 2011.

[25] N. C. Beaulieu, A. A. Abu-Dayya, and P. J. McLane. Estimating the distribution of a sum of
independent lognormal random variables. IEEE Transactions on Communications, 43(12):2869,
1995.

[26] N. C. Beaulieu and Q. Xie. An optimal lognormal approximation to lognormal sum distri-
butions. IEEE Transactions on Vehicular Technology, 53(2):479–489, 2004.

[27] D. Beaver and A. Wool. Quorum-based secure multi-party computation. In Advances in
Cryptology – EUROCRYPT, pages 375–390, 1998.

[28] J.-F. Bercher and C. Vignat. Estimating the entropy of a signal with applications. IEEE
Transactions on Signal Processing, 48(6):1687–1694, 2000.

175

[29] T. B. Berrett, R. J. Samworth, and M. Yuan. Efficient multivariate entropy estimation via
k-nearest neighbour distances. The Annals of Statistics, 47(1):288–318, 2019.

[30] A. Bhowmick, D. Boneh, S. Myers, and K. T. K. Tarbe. The Apple PSI sys-
tem. https://www.apple.com/child-safety/pdf/Apple PSI System Security Protocol
and Analysis.pdf, 2021.

[31] G. R. Blakley. Safeguarding cryptographic keys. In International Workshop on Managing Re-
quirements Knowledge (MARK), pages 313–318, 1979.

[32] M. Blanton and M. Aliasgari. Secure outsourced computation of iris matching. Journal of
Computer Security, 20(2-3):259–305, 2012.

[33] M. Blanton and F. Bayatbabolghani. Improving the security and efficiency of private ge-
nomic computation using server aid. IEEE Security and Privacy, 15(5):20–28, 2017.

[34] M. Blanton, M. T. Goodrich, and C. Yuan. Secure and accurate summation of many floating-
point numbers. Proceedings on Privacy Enhancing Technologies (PoPETs), 2023(3):432–445, 2023.

[35] M. Blanton, A. Kang, and C. Yuan. Improved building blocks for secure multi-party com-
putation based on secret sharing with honest majority. In International Conference on Applied
Cryptography and Network Security (ACNS), pages 377–397, 2020.

[36] M. Blanton, A. Kang, and C. Yuan. Improved building blocks for secure multi-party com-
putation based on secret sharing with honest majority. In International Conference on Applied
Cryptography and Network Security (ACNS), pages 377–397, 2020.

[37] M. Blanton and S. Saraph. Oblivious maximum bipartite matching size algorithm with ap-
plications to secure fingerprint identification. In European Symposium on Research in Computer
Security (ESORICS), pages 384–406, 2015.

[38] M. Blanton, Y. Zhang, and K. B. Frikken. Secure and verifiable outsourcing of large-scale bio-
metric computations. ACM Transactions on Information and System Security (TISSEC), 16(3):1–
33, 2013.

[39] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In European Symposium on Research in Computer Security (ES-
ORICS), pages 192–206, 2008.

[40] S. Bu, L. Lakshmanan, R. Ng, and G. Ramesh. Preservation of patterns and input-output
privacy. In IEEE International Conference on Data Engineering, pages 696–705, 2006.

[41] C. C. S. Caiado and P. N. Rathie. Polynomial coefficients and distribution of the sum of
discrete uniform variables. In Conference of the Society of Special Functions and their Applications
(SSFA), 2007.

[42] L. Cao, T. Tong, D. Trafimow, T. Wang, and X. Chen. The a priori procedure for estimating the
mean in both log-normal and gamma populations and robustness for assumption violations.
Methodology, 18(1):24–43, 2022.

176

https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf
https://www.apple.com/child-safety/pdf/Apple_PSI_System_Security_Protocol_and_Analysis.pdf

[43] O. Catrina. Efficient secure floating-point arithmetic using Shamir secret sharing. In Inter-
national Joint Conference on e-Business and Telecommunications (ICETE), pages 49–60, 2019.

[44] O. Catrina. Evaluation of floating-point arithmetic protocols based on Shamir secret sharing.
In International Joint Conference on e-Business and Telecommunications (ICETE), pages 108–131,
2020.

[45] O. Catrina. Optimizing secure floating-point arithmetic: sums, dot products, and polyno-
mials. In Proceedings of the Romanian Academy, pages 21–28, 2020.

[46] O. Catrina. Performance analysis of secure floating-point sums and dot products. In IEEE
International Conference on Communications (COMM), pages 465–470, 2020.

[47] O. Catrina and S. De Hoogh. Improved primitives for secure multiparty integer compu-
tation. In International Conference on Security and Cryptography for Networks (SCN), pages
182–199, 2010.

[48] O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In Financial Cryp-
tography and Data Security, pages 35–50, 2010.

[49] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh. ASTRA: High throughput 3PC over
rings with application to secure prediction. In ACM Workshop on Cloud Computing Security
(CCSW), pages 81–92, 2019.

[50] H. Chaudhari, R. Rachuri, and A. Suresh. Trident: Efficient 4PC framework for privacy
preserving machine learning. In Network and Distributed System Security Symposium (NDSS),
2020.

[51] M. Cheraghchi. Expressions for the entropy of basic discrete distributions. IEEE Transactions
on Information Theory, 65(7):3999–4009, 2019.

[52] H. Cho, D. J. Wu, and B. Berger. Secure genome-wide association analysis using multiparty
computation. Nature Biotechnology, 36(6):547–551, 2018.

[53] C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot. Label-only membership
inference attacks. In International Conference on Machine Learning, pages 1964–1974, 2021.

[54] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of confidential data.
Electronic Notes in Theoretical Computer Science, 59(3):238–251, 2002.

[55] F. Clementi and M. Gallegati. Pareto’s law of income distribution: Evidence for Germany,
the United Kingdom, and the United States. In Econophysics of Wealth Distributions, pages
3–14. 2005.

[56] B. R. Cobb, R. Rumı́, and A. Salmerón. Approximating the distribution of a sum of log-
normal random variables. Statistics and Computing, 16(3):293–308, 2012.

[57] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, second
edition, 2006.

177

[58] R. Cramer, I. Damgård, D. Escudero, P. Scholl, and C. Xing. SPDZ2k : Efficient MPC mod 2k

for dishonest majority. In Advances in Cryptology – CRYPTO, pages 769–798, 2018.

[59] R. Cramer, I. Damgård, and Y. Ishai. Share conversion, pseudorandom secret-sharing and
applications to secure computation. In Theory of Cryptography Conference (TCC), pages 342–
362, 2005.

[60] A. Dalskov, D. Escudero, and M. Keller. Secure evaluation of quantized neural networks.
Proceedings on Privacy Enhancing Technologies (PoPETs), 2020(4):355–375, 2020.

[61] A. Dalskov, D. Escudero, and M. Keller. Fantastic four: Honest-majority four-party secure
computation with malicious security. In USENIX Security Symposium, pages 2183–2200,
2021.

[62] I. Damgård, D. Escudero, T. Frederiksen, M. Keller, P. Scholl, and N. Volgushev. New prim-
itives for actively-secure MPC over rings with applications to private machine learning. In
IEEE Symposium on Security and Privacy (S&P), pages 1102–1120, 2019.

[63] I. Damgård and J. Nielsen. Scalable and unconditionally secure multiparty computation. In
Advances in Cryptology – CRYPTO, pages 572–590, 2007.

[64] I. Damgård, C. Orlandi, and M. Simkin. Yet another compiler for active security or: Efficient
MPC over arbitrary rings. In Advances in Cryptology – CRYPTO, pages 799–829, 2018.

[65] I. Damgard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. In Advances in Cryptology – CRYPTO, pages 643–662, 2012.

[66] J. Deng, W. Dong, R. Socher, L. Li, K Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical
image database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
248–255, 2009.

[67] D. Denning. Cryptography and Data Security. Addison-Wesley Reading, 1982.

[68] V. Deshpande, L. B. Schwarz, M. J. Atallah, M. Blanton, and K. B. Frikken. Outsourcing man-
ufacturing: Secure price-masking mechanisms for purchasing component parts. Production
and Operations Management, 20(2):165–180, 2011.

[69] V. Deshpande, L. B. Schwarz, M. J. Atallah, M. Blanton, K. B. Frikken, and J. Li. Secure
collaborative planning, forecasting and replenishment (SCPFR). CERIAS Tech Report 2006-
65, 2005.

[70] V. Deshpande, L. B. Schwarz, M. J. Atallah, M. Blanton, K. B. Frikken, and J. Li. Secure
collaborative planning, forecasting and replenishment (SCPFR). In Multi-Echelon/Public Ap-
plications of Supply Chain Management Conference, pages 165–180, 2006.

[71] X. Dong, D. A. Randolph, C. Weng, A. N. Kho, J. M. Rogers, and X. Wang. Developing high
performance secure multi-party computation protocols in healthcare: a case study of patient
risk stratification. AMIA Summits on Translational Science Proceedings, 2021:200, 2021.

178

[72] T. Dugan and X. Zou. A survey of secure multiparty computation protocols for privacy
preserving genetic tests. In IEEE International Conference on Connected Health: Applications,
Systems and Engineering Technologies (CHASE), pages 173–182, 2016.

[73] C. Dwork. Differential privacy: A survey of results. In International Conference on Theory and
Applications of Models of Computation (TAMC), pages 1–19, 2008.

[74] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference, pages 265–284, 2006.

[75] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3–4):211–407, 2014.

[76] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 51–60, 2010.

[77] H. Eerikson, M. Keller, C. Orlandi, P. Pullonen, J. Puura, and M. Simkin. Use your brain!
arithmetic 3PC for any modulus with active security. In Conference on Information-Theoretic
Cryptography (ITC), pages 5:1–5:24, 2020.

[78] M. D. Ercegovac and T. Lang. Digital Arithmetic. Elsevier, 2004.

[79] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved primitives for MPC
over mixed arithmetic-binary circuits. In Advances in Cryptology – CRYPTO, pages 823–852,
2020.

[80] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved primitives for MPC
over mixed arithmetic-binary circuits. IACR Cryptology ePrint Archive Report 2020/338,
2020.

[81] R. J. Evans and J. Boersma. The entropy of a Poisson distribution (C. Robert Appledorn).
SIAM Review, 30(2):314–317, 1988.

[82] L. Fenton. The sum of log-normal probability distributions in scatter transmission systems.
IRE Transactions on Communications Systems, 8(1):57–67, 1960.

[83] M. Franz and S. Katzenbeisser. Processing encrypted floating point signals. In ACM Multi-
media Workshop on Multimedia and Security (MM&Sec), pages 103–108, 2011.

[84] W. Gao, S. Kannan, S. Oh, and P. Viswanath. Estimating mutual information for discrete-
continuous mixtures. Proceedings on Advances in Neural Information Processing Systems
(NeurIPS), 30:5988–5999, 2017.

[85] W. Gao, S. Oh, and P. Viswanath. Demystifying fixed k-nearest neighbor information esti-
mators. IEEE Transactions on Information Theory, 64(8):5629–5661, 2018.

[86] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty computations
with applications to threshold cryptography. In Principles of Distributed Computing (PODC),
pages 101–111, 1998.

179

[87] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of quanti-
zation methods for efficient neural network inference. In Low-Power Computer Vision, pages
291–326. 2022.

[88] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy
mechanisms. In ACM Symposium on Theory of Computing (STOC), pages 351–360, 2009.

[89] D. Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys (CSUR), 23(1):5–48, 1991.

[90] R. E. Goldschmidt. Applications of division by convergence. Master’s thesis, MIT, 1964.

[91] B. Hilprecht, M. Härterich, and D. Bernau. Monte Carlo and reconstruction membership
inference attacks against generative models. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2019(4):232–249, 2019.

[92] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. MobileNets: Efficient convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861, 2017.

[93] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce, and A. Roth. Dif-
ferential privacy: An economic method for choosing epsilon. In IEEE Computer Security
Foundations Symposium (CSF), pages 398–410, 2014.

[94] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang. Membership inference attacks
on machine learning: A survey. ACM Computing Surveys (CSUR), 2022. 10.1145/3523273.

[95] M. Ion, B. Kreuter, A. Nergiz, S. Patel, S. Saxena, K. Seth, M. Raykova, D. Shanahan, and
M. Yung. On deploying secure computing: Private intersection-sum-with-cardinality. In
IEEE European Symposium on Security and Privacy (EuroS&P), pages 370–389, 2020.

[96] M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access structures.
In IEEE Global Telecommunication Conference (GLOBECOM), pages 99–102, 1987.

[97] M. Ito, N. Takagi, and S. Yajima. Efficient initial approximation for multiplicative division
and square root by a multiplication with operand modification. IEEE Transactions on Com-
puters, 46(4):495–498, 1997.

[98] M. Iwamoto and J. Shikata. Information theoretic security for encryption based on con-
ditional rényi entropies. In International Conference on Information Theoretic Security, pages
103–121, 2013.

[99] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko.
Quantization and training of neural networks for efficient integer-arithmetic-only inference.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2704–2713, 2018.

[100] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A low latency framework
for secure neural network inference. In USENIX Security Symposium, pages 1651–1669, 2018.

[101] L. Kamm and J. Willemson. Secure floating point arithmetic and private satellite collision
analysis. International Journal of Information Security, 14(6):531–548, 2015.

180

[102] M. Keller. MP-SPDZ: A versatile framework for multi-party computation. In ACM Confer-
ence on Computer and Communications Security (CCS), pages 1575–1590, 2020.

[103] M. Keller, D. Rotaru, N. P. Smart, and T. Wood. Reducing communication channels in MPC.
In International Conference on Security and Cryptography for Networks (SCN), pages 181–199,
2018.

[104] M. Keller and K. Sun. Secure quantized training for deep learning. In International Conference
on Machine Learning, pages 10912–10938, 2022.

[105] L. Kerik, P. Laud, and J. Randmets. Optimizing MPC for robust and scalable integer and
floating-point arithmetic. In International Conference on Financial Cryptography and Data Secu-
rity, pages 271–287, 2016.

[106] L. Kerik, P. Laud, and J. Randmets. Optimizing MPC for robust and scalable integer and
floating-point arithmetic. In International Conference on Financial Cryptography and Data Secu-
rity Workshops, pages 271–287, 2016.

[107] B. Köpf and D. Basin. Automatically deriving information-theoretic bounds for adaptive
side-channel attacks. Journal of Computer Security, 19(1):1–31, 2011.

[108] R. Kotecha and S. Garg. Preserving output-privacy in data stream classification. Progress in
Artificial Intelligence, 6:87–104, 2017.

[109] A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information. Physical
Review E, 69(6):066138, 2004.

[110] B. Kreuter. Secure multiparty computation at Google. Real World Crypto, 2017. Available
from https://www.youtube.com/watch?v=ee7oRsDnNNc.

[111] T. Krips and J. Willemson. Hybrid model of fixed and floating point numbers in secure
multiparty computations. In International Conference on Information Security (ISC), pages 179–
197, 2014.

[112] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma. CrypTFlow:
Secure TensorFlow inference. In IEEE Symposium on Security and Privacy (S&P), pages 336–
353, 2020.

[113] A. Lapets, N. Volgushev, A. Bestavros, F. Jansen, and M. Varia. Secure MPC for analytics as
a web application. In IEEE Cybersecurity Development (SecDev), pages 73–74, 2016.

[114] P. Laud and J. Randmets. A domain-specific language for low-level secure multiparty com-
putation protocols. In ACM Conference on Computer and Communications Security (CCS), pages
1492–1503, 2015.

[115] Y. Li, Y. Duan, Z. Huang, C. Hong, C. Zhang, and Y. Song. Efficient 3PC for binary cir-
cuits with application to Maliciously-Secure DNN inference. In USENIX Security Symposium,
pages 5377–5394, 2023.

[116] Ligero. Secure and private collaboration for blockchains and beyond. https://ligero-inc.
com/, 2022. Last accessed: 2022-08-16.

181

 https://www.youtube.com/watch?v=ee7oRsDnNNc
https://ligero-inc.com/
https://ligero-inc.com/

[117] Y. Lindell and A. Nof. A framework for constructing fast MPC over arithmetic circuits
with malicious adversaries and an honest majority. In ACM Conference on Computer and
Communications Security (CCS), pages 259–276, 2017.

[118] F. Liu. Generalized gaussian mechanism for differential privacy. IEEE Transactions on Knowl-
edge and Data Engineering, 31(4):747–756, 2018.

[119] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network predictions via MiniONN
transformations. In ACM Conference on Computer and Communications Security (CCS), pages
619–631, 2017.

[120] Y.-C. Liu, Y.-T. Chiang, T.-S. Hsu, C.-J. Liau, and D.-W. Wang. Floating point arithmetic pro-
tocols for constructing secure data analysis application. Procedia Computer Science, 22:152–
161, 2013.

[121] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. Rabbit: Effi-
cient comparison for secure multi-party computation. In International Conference on Financial
Cryptography and Data Security, pages 249–270, 2021.

[122] P. Mardziel, M. Hicks, J. Katz, and M. Srivatsa. Knowledge-oriented secure multiparty com-
putation. In ACM SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS), pages 1–12, 2012.

[123] P. Markstein. Software division and square root using Goldschmidt’s algorithms. In Real
Numbers and Computers, pages 146–157, 2004.

[124] M Marwan, A. Kartit, and H. Ouahmane. Security enhancement in healthcare cloud using
machine learning. Procedia Computer Science, 127:388–397, 2018.

[125] J. L. Massey. Guessing and entropy. In IEEE International Symposium on Information Theory
(ISIT), page 204, 1994.

[126] U. Maurer. Secure multi-party computation made simple. In Security in Communication
Networks (SCN), pages 14–28, 2002.

[127] F. McSherry and K. Talwar. Mechanism design via differential privacy. In IEEE Symposium
on Foundations of Computer Science (FOCS), pages 94–103, 2007.

[128] R. Mendes and J. Vilela. Privacy-preserving data mining: methods, metrics, and applica-
tions. IEEE Access, 5:10562–10582, 2017.

[129] I. Mironov, O. Pandey, O. Reingold, and S. Vadhan. Computational differential privacy. In
Advances in Cryptology – CRYPTO, pages 126–142, 2009.

[130] P. Mohassel and P. Rindal. ABY3: A mixed protocol framework for machine learning. In
ACM Conference on Computer and Communications Security (CCS), pages 35–52, 2018.

[131] A. Monreale and W. Wang. Privacy-preserving outsourcing of data mining. In IEEE Interna-
tional Computer Software and Applications Conference (COMPSAC), volume 2, pages 583–588,
2016.

182

[132] K. R. Moon, J. S. Stanley III, D. Burkhardt, D. van Dijk, G. Wolf, and S. Krishnaswamy.
Manifold learning-based methods for analyzing single-cell RNA-sequencing data. Current
Opinion in Systems Biology, 7:36–46, 2018.

[133] M. Nasr, R. Shokri, and A. Houmansadr. Machine learning with membership privacy us-
ing adversarial regularization. In ACM Conference on Computer and Communications Security
(CCS), pages 634–646, 2018.

[134] J. P. Near, D. Darais, N. Lefkovitz, and G. Howarth. Guidelines for evaluating differential
privacy guarantees. Technical Report BUCS-TR-2016-008, NIST, 2023.

[135] L. Paninski. Estimation of entropy and mutual information. Neural Computation, 15(6):1191–
1253, 2003.

[136] A. Patra and A. Suresh. BLAZE: Blazing fast privacy-preserving machine learning. In Net-
work and Distributed System Security Symposium (NDSS), 2020.

[137] A. Rahimzamani, H. Asnani, P. Viswanath, and S. Kannan. Estimators for multivariate infor-
mation measures in general probability spaces. Proceedings on Advances in Neural Information
Processing Systems (NeurIPS), 31, 2018.

[138] A. Rastogi, P. Mardziel, M. Hicks, and M. A. Hammer. Knowledge inference for optimizing
secure multi-party computation. In ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS), pages 3–14, 2013.

[139] D. Rathee, A. Bhattacharya, D. Gupta, R. Sharma, and D. Song. Secure floating-point train-
ing. In USENIX Security Symposium, pages 6329–6346, 2023.

[140] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and A. Rastogi. SecFloat:
Accurate floating-point meets secure 2-party computation. In IEEE Symposium on Security
and Privacy (S&P), pages 1553–1553, 2022.

[141] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran, and A. Rastogi.
SiRnn: A math library for secure RNN inference. In IEEE Symposium on Security and Privacy
(S&P), pages 1003–1020, 2021.

[142] J. F. Reiser and D. E. Knuth. Evading the drift in floating-point addition. Information Process-
ing Letters, 3(3):84–87, 1975.

[143] D. Rotaru and T. Wood. Marbled circuits: Mixing arithmetic and boolean circuits with active
security. In INDOCRYPT, pages 227–249, 2019.

[144] K. Sasaki and K. Nuida. Efficiency and accuracy improvements of secure floating-point ad-
dition over secret sharing. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 105(3):231–241, 2022.

[145] S. C. Schwartz and Y.-S. Yeh. On the distribution function and moments of power sums with
log-normal components. Bell System Technical Journal, 61(7):1441–1462, 1982.

183

[146] SecureSCM. Deliverable D9.2, EU FP7 Project Secure Supply Chain Management (Se-
cureSCM). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.393&rep=
rep1&type=pdf, 2009.

[147] D. Senaratne and C. Tellambura. Numerical computation of the lognormal sum distribution.
In IEEE Global Telecommunication Conference (GLOBECOM), pages 1–6, 2009.

[148] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[149] C. E. Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423, 1948.

[150] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against
machine learning models. In IEEE Symposium on Security and Privacy (S&P), pages 3–18,
2017.

[151] M. Skórski. Strong chain rules for min-entropy under few bits spoiled. In IEEE International
Symposium on Information Theory (ISIT), pages 1122–1126, 2019.

[152] G Smith. On the foundations of quantitative information flow. In International Conference on
Foundations of Software Science and Computational Structures, pages 288–302, 2009.

[153] L. Song and P. Mittal. Systematic evaluation of privacy risks of machine learning models. In
USENIX Security Symposium, pages 2615–2632, 2021.

[154] L. Song, R. Shokri, and P. Mittal. Membership inference attacks against adversarially robust
deep learning models. In IEEE Symposium on Security and Privacy Workshops (SPW), pages
50–56, 2019.

[155] W. Souma. Physics of personal income. In Empirical Science of Financial Fluctuations, pages
343–352, 2002.

[156] S. P. Strong, R. Koberle, R. R. D. R. van Steveninck, and W. Bialek. Entropy and information
in neural spike trains. Physical Review Letters, 80(1):197, 1998.

[157] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei. Demystifying membership inference
attacks in machine learning as a service. IEEE Transactions on Services Computing, 14(6):2073–
2089, 2021.

[158] M. Veeningen, S. Chatterjea, A. Z. Horváth, G. Spindler, E. Boersma, P. van der Spek, O. Van
Der Galiën, J. Gutteling, W. Kraaij, and T. Veugen. Enabling analytics on sensitive medical
data with secure multi-party computation. In Building Continents of Knowledge in Oceans of
Data: The Future of Co-Created eHealth, pages 76–80. 2018.

[159] J. D. Victor. Binless strategies for estimation of information from neural data. Physical Review
E, 66(5):051903, 2002.

[160] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-party secure computation for neural
network training. Proceedings on Privacy Enhancing Technologies (PoPETs), 2019(3):26–49, 2019.

184

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.393&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.393&rep=rep1&type=pdf

[161] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin. Falcon: Honest-
majority maliciously secure framework for private deep learning. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2021(1):188–208, 2021.

[162] A. Walker, S. Patel, and M. Yung. Helping organizations do more without collecting more
data. Google Security Blog, jun 2019. Last accessed: 2022-08-16.

[163] T. Wang and L. Liu. Output privacy in data mining. ACM Transactions on Database Systems
(TODS), 36(1):1–34, 2011.

[164] J. Wu, N. B. Mehta, and J. Zhang. Flexible lognormal sum approximation method. In IEEE
Global Telecommunication Conference (GLOBECOM), pages 3413–3417, 2005.

[165] Y. Zhang, A. Steele, and M. Blanton. PICCO: A general-purpose compiler for private dis-
tributed computation. In ACM Conference on Computer and Communications Security (CCS),
pages 813–826, 2013.

185

	Acknowledgments
	List of Tables
	List of Figures
	List of Protocols
	Abstract
	Introduction
	Challenge and Scope
	Dissertation Overview

	I A Replicated Secret Sharing Framework for an Arbitrary Number of Parties
	Related Work
	Secret Sharing Schemes
	Secure Floating-Point Arithmetic

	Background
	Secret Sharing
	Replicated Secret Sharing

	Integer Protocols
	Building Blocks
	Random Number Generation
	Multiplication
	Share reconstruction (Open)
	Inputting Private values

	Composite Protocols
	Binary-to-Arithmetic Conversion
	Shared Randomness Generation
	Comparisons and Equality Testing
	Bit-Decomposition
	Private Left Shift
	Truncation and Division
	Truncation
	Division

	Performance Evaluation

	Floating-Point Protocols
	Floating-Point Background
	Rounding and Truncation
	Multiplication
	Division
	Addition and Subtraction
	Comparisons

	II Information Disclosure Analysis for Secure Function Evaluation
	Related Work
	Quantitative Information Flow
	Function Information Disclosure
	Information Disclosure from Machine Learning Models
	Differential Privacy

	Background
	Information Theory
	Formal Setting

	Average Salary: Single Evaluation
	Single Execution Analysis
	Discrete Distributions
	Continuous Distributions
	Discrete versus Continuous Distributions
	Comparison to Differential Privacy

	Min-Entropy Analysis
	Mixed Distribution Parameters

	Average Salary: Multiple Executions
	Two Executions
	Bivariate Normal Distributions
	Experimental Evaluation
	Additional Two Executions Experiments
	Mixed Distribution Parameters for Two Executions

	Three Executions and Beyond
	Three Executions
	M Executions
	Experimental Evaluation

	Recommendations

	Advanced Statistical Functions
	Candidate Functions
	Entropy Estimators
	Experiments
	Maximum
	Median
	Variance
	Relationship between f, f2, and f(,2)

	Conclusions
	Additional Protocols
	Sparse Multiplication
	edaBit Generation for RNTE

	Neural Network Applications
	Related Works
	Quantized Neural Networks
	Experimental Results

	Bibliography

